@article{SchumannScherthanFranketal.2020, author = {Schumann, Sarah and Scherthan, Harry and Frank, Torsten and Lapa, Constantin and M{\"u}ller, Jessica and Seifert, Simone and Lassmann, Michael and Eberlein, Uta}, title = {DNA Damage in Blood Leukocytes of Prostate Cancer Patients Undergoing PET/CT Examinations with [\(^{68}\)Ga]Ga-PSMA I\&T}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {2}, issn = {2072-6694}, doi = {10.3390/cancers12020388}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200585}, pages = {388}, year = {2020}, abstract = {The aim was to investigate the induction and repair of radiation-induced DNA double-strand breaks (DSBs) as a function of the absorbed dose to the blood of patients undergoing PET/CT examinations with [68Ga]Ga-PSMA. Blood samples were collected from 15 patients before and at four time points after [68Ga]Ga-PSMA administration, both before and after the PET/CT scan. Absorbed doses to the blood were calculated. In addition, blood samples with/without contrast agent from five volunteers were irradiated ex vivo by CT while measuring the absorbed dose. Leukocytes were isolated, fixed, and stained for co-localizing γ-H2AX+53BP1 DSB foci that were enumerated manually. In vivo, a significant increase in γ-H2AX+53BP1 foci compared to baseline was observed at all time points after administration, although the absorbed dose to the blood by 68Ga was below 4 mGy. Ex vivo, the increase in radiation-induced foci depended on the absorbed dose and the presence of contrast agent, which could have caused a dose enhancement. The CT-dose contribution for the patients was estimated at about 12 mGy using the ex vivo calibration. The additional number of DSB foci induced by CT, however, was comparable to the one induced by 68Ga. The significantly increased foci numbers after [68Ga]Ga-PSMA administration may suggest a possible low-dose hypersensitivity.}, language = {en} } @article{SchumannEberleinMuhtadietal.2018, author = {Schumann, Sarah and Eberlein, Uta and Muhtadi, Razan and Lassmann, Michael and Scherthan, Harry}, title = {DNA damage in leukocytes after internal ex-vivo irradiation of blood with the α-emitter Ra-223}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {2286}, doi = {10.1038/s41598-018-20364-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175596}, year = {2018}, abstract = {Irradiation with high linear energy transfer α-emitters, like the clinically used Ra-223 dichloride, severely damages cells and induces complex DNA damage including closely spaced double-strand breaks (DSBs). As the hematopoietic system is an organ-at-risk for the treatment, knowledge about Ra-223-induced DNA damage in blood leukocytes is highly desirable. Therefore, 36 blood samples from six healthy volunteers were exposed ex-vivo (in solution) to different concentrations of Ra-223. Absorbed doses to the blood were calculated assuming local energy deposition of all α- and β-particles of the decay, ranging from 0 to 142 mGy. γ-H2AX + 53BP1 co-staining and analysis was performed in leukocytes isolated from the irradiated blood samples. For DNA damage quantification, leukocyte samples were screened for occurrence of α-induced DNA damage tracks and small γ-H2AX + 53BP1 DSB foci. This revealed a linear relationship between the frequency of α-induced γ-H2AX damage tracks and the absorbed dose to the blood, while the frequency of small γ-H2AX + 53BP1 DSB foci indicative of β-irradiation was similar to baseline values, being in agreement with a negligible β-contribution (3.7\%) to the total absorbed dose to the blood. Our calibration curve will contribute to the biodosimetry of Ra-223-treated patients and early after incorporation of α-emitters.}, language = {en} } @article{ScherthanLeeMausetal.2019, author = {Scherthan, Harry and Lee, Jin-Ho and Maus, Emanuel and Schumann, Sarah and Muhtadi, Razan and Chojowski, Robert and Port, Matthias and Lassmann, Michael and Bestvater, Felix and Hausmann, Michael}, title = {Nanostructure of clustered DNA damage in leukocytes after in-solution irradiation with the alpha emitter Ra-223}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {12}, issn = {2072-6694}, doi = {10.3390/cancers11121877}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193038}, year = {2019}, abstract = {Background: Cancer patients are increasingly treated with alpha-particle-emitting radiopharmaceuticals. At the subcellular level, alpha particles induce densely spaced ionizations and molecular damage. Induction of DNA lesions, especially clustered DNA double-strand breaks (DSBs), threatens a cell's survival. Currently, it is under debate to what extent the spatial topology of the damaged chromatin regions and the repair protein arrangements are contributing. Methods: Super-resolution light microscopy (SMLM) in combination with cluster analysis of single molecule signal-point density regions of DSB repair markers was applied to investigate the nano-structure of DNA damage foci tracks of Ra-223 in-solution irradiated leukocytes. Results: Alpha-damaged chromatin tracks were efficiently outlined by γ-H2AX that formed large (super) foci composed of numerous 60-80 nm-sized nano-foci. Alpha damage tracks contained 60-70\% of all γ-H2AX point signals in a nucleus, while less than 30\% of 53BP1, MRE11 or p-ATM signals were located inside γ-H2AX damage tracks. MRE11 and p-ATM protein fluorescent tags formed focal nano-clusters of about 20 nm peak size. There were, on average, 12 (±9) MRE11 nanoclusters in a typical γ-H2AX-marked alpha track, suggesting a minimal number of MRE11-processed DSBs per track. Our SMLM data suggest regularly arranged nano-structures during DNA repair in the damaged chromatin domain.}, language = {en} } @article{GoeringSchumannMuelleretal.2022, author = {G{\"o}ring, Lukas and Schumann, Sarah and M{\"u}ller, Jessica and Buck, Andreas K. and Port, Matthias and Lassmann, Michael and Scherthan, Harry and Eberlein, Uta}, title = {Repair of a-particle-induced DNA damage in peripheral blood mononuclear cells after internal ex vivo irradiation with \(^{223}\)Ra}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, volume = {49}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, number = {12}, doi = {10.1007/s00259-022-05860-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324557}, pages = {3981-3988}, year = {2022}, abstract = {Purpose As α-emitters for radiopharmaceutical therapies are administered systemically by intravenous injection, blood will be irradiated by α-particles that induce clustered DNA double-strand breaks (DSBs). Here, we investigated the induction and repair of DSB damage in peripheral blood mononuclear cells (PBMCs) as a function of the absorbed dose to the blood following internal ex vivo irradiation with [\(^{223}\)Ra]RaCl2. Methods Blood samples of ten volunteers were irradiated by adding [\(^{223}\)Ra]RaCl2 solution with different activity concentrations resulting in absorbed doses to the blood of 3 mGy, 25 mGy, 50 mGy and 100 mGy. PBMCs were isolated, divided in three parts and either fixed directly (d-samples) or after 4 h or 24 h culture. After immunostaining, the induced γ-H2AX α-tracks were counted. The time-dependent decrease in α-track frequency was described with a model assuming a repair rate R and a fraction of non-repairable damage Q. Results For 25 mGy, 50 mGy and 100 mGy, the numbers of α-tracks were significantly increased compared to baseline at all time points. Compared to the corresponding d-samples, the α-track frequency decreased significantly after 4 h and after 24 h. The repair rates R were (0.24 ± 0.05) h-1 for 25 mGy, (0.16 ± 0.04) h-1 for 50 mGy and (0.13 ± 0.02) h-1 for 100 mGy, suggesting faster repair at lower absorbed doses, while Q-values were similar. Conclusion The results obtained suggest that induction and repair of the DSB damage depend on the absorbed dose to the blood. Repair rates were similar to what has been observed for irradiation with low linear energy transfer.}, language = {en} }