@phdthesis{Bellinger2016, author = {Bellinger, Daniel}, title = {Implementation of new reaction pathway determining methods and study of solvent effects on the excited state nature of perylene based dyes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144435}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Two thematic complexes were addressed within this work. One part is related to improvements and new implementations into the CAST program package. Thereby the main focus laid on the delivery of a tool which can be used to characterize complex reactions and their mechanisms. But also within the new force field (FF) method (SAPT-FF) within the CAST program, several improvements were made. The second topic is related to the description of dye molecules and their spectral properties. The main focus within these studies was set on the influence of the environment on these properties. In the first topic improvements of the local acting NEB (nudged elastic band) methods were included and the number of available methods was extended. The initial pathway generation was improved by implementing the IDPP (image dependent pair potential) method and a new method was implemented for describing temperature dependent pathways. Additionally, improvements have been made to the optimization routines (global NEB). As a second part the Pathopt (PO) method was considerably improved. In the beginning of the work the original PO idea was used. In this approach one starts with a global optimization on one n-1 dimensional hyperplane which divides the reaction into two sub-areas for obtaining guesses of TSs (transition states). These found TS guesses were used to optimize to the "true" TS. Starting from the optimized ones a relaxation to the next connected minima is done. This idea has been automatically implemented and extended to several number of hyperplanes. In this manner a group of pathsegments is obtained which needs to be connected, but within this work it was realized that such a procedure might be not very efficient. Therefore, a new strategy was implemented which is founded on the same constrained global optimization scheme (MCM) for which the user defines the number of hyperplanes generated. The number of such generated hyperplanes should be large enough 134 to describe the space between the concerning reactants in a sufficient way. The found minima are directly used to built up the reaction pathway. For this purpose a RMSD (root mean square deviation) criterion is used to walk along ways of minimal change from one to another hyperplane. To prove the implementations various test calculations were carried out and extensions included to prove the capabilities of the new strategy. Related to these tests a new strategy for applying the move steps in MCM (Monte Carlo with minimization) was realized which is also related to the question of the coordinates representation. We were able to show that the hopping steps in MCM can be improved by applying Cartesian steps in combination of random dihedral moves with respect to the constraint. In this way it was possible to show that a large variety of systems can be treated. An additional chapter shows the improvements of the SAPT-FF implementation and related test cases. It was possible to treat benzene dimer and cluster systems of different sizes consistently also in accordance with high level ab initio based approaches. Furthermore, we showed that the SAPT-FF with the right parameters outperforms the standard AMOEBA implementation which is the basis of the SAPT-FF implementation. In the last three chapters deal with the description of perlyene-based dyes. In the first smaller chapter ground state chemistry description of macro cycles of PBI (perylene bisimide) derivatives were investigated. Therefore, AFM (atomic force microscopy) based pictures were explained within our study. The methods to explain aggregation behavior in dependency of the ring size were MD simulations and configuration studies. The last two chapters deal with opto-electronic or photo-physical properties of PBI and PTCDA (perylene-3,4,9,10-tetracarboxylic dianhydride). In detail, we investigated the role of the environment and the aggregate or crystal surrounding by applying different models. In that way implicit and explicit solvation models, the size of aggregates and vibration motions were used. In the case of PBI the recent work is found on preliminary studies related to my bachelor thesis and extends it. It was shown that the direct influence of a polarizable surrounding, as well as explicit inclusion of solvent molecules on the overall description of the excitations and nature of the excited states is weaker as one might expect. However the inclusion of intra-molecular degrees of freedom showed a stronger influence on the state characteristics and can induce a change of the order of states within the dimer picture. For the PTCDA molecule the main focus was set on the description of the absorption spectrum of crystalline thin films. Related to this older works exist which already gave a description and assignment of the absorption band, but are based on different approaches compared to the one used in this work. We used the supermolecule ansatz, whereas the environment and different aggregate sizes were investigated. Within the dimer based approach we were able to show that using continuum solvation (IEFPCM/COSMO) based description for the environment the relative order of states remains unchanged. Similar to the PBI calculations the influence of the vibrational motions /distortions is larger. The simulation of the crystal environment by using QM/MM (quantum mechanics/molecular mechanics) approaches delivered that an asymmetric charge distribution might induce a localization of the excitation and a stronger mixing of states. For obtaining further insights we go beyond the dimer picture and aggregates of different sizes were used, whereas the simulations up to the octadecamer mono- and even dual-layer stack were carried out. Within these calculations it was shown that the H-coupling is dominating over a weaker J-coupling between different stacks. Additionally the calculations based on DFT (density functional theory) and semi-empirics showed that the lowest state in terms of energy are mostly of Frenkel type, whereas the higher lying states are CT ones which mix with embedded Frenkel type states. The first band of the absorption spectrum was explained by inclusion of vibrational motions within the stacks which induce an intensity gain of the first excited state. This intensity was not explainable by using the undistorted stacks. Also relaxations at the crystal surface might play a role, but are experimentally not explainable.}, subject = {Globale Optimierung}, language = {en} } @phdthesis{Grebner2012, author = {Grebner, Christoph}, title = {New Tabu-Search Algorithms for the Exploration of Energy Landscapes of Molecular Systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75591}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {The visualization of energy functions is based on the possibility of separating different degrees of freedom. The most important one is the Born-Oppenheimer-approximation, which separates nucleus and electron movements. This allows the illustration of the potential energy as a function of the nuclei coordinates. Minima of the surface correspond to stable points like isomers or conformers. They are important for predicting the stability or thermodynamical of a system. Stationary points of first order correspond to transition points. They describe phase transitions, chemical reaction, or conformational changes. Furthermore, the partition function connects the potential hypersurface to the free energy of the system. The aim of the present work is the development and application of new approaches for the efficient exploration of multidimensional hypersurfaces. Initially, the Conformational Analysis and Search Tool (CAST) program was developed to create a basis for the new methods and algorithms. The development of CAST in object oriented C++ included, among other things, the implementation of a force field, different interfaces to external programs, analysis tools, and optimization libraries. Descriptions of an energy landscape require knowledge about the most stable minima. The Gradient Only Tabu Search (GOTS) has been shown to be very efficient in the optimization of mathematical test functions. Therefore, GOTS was taken as a starting point. Tabu-Search is based on the steepest descent - modest ascent strategy. The steepest descent is used for finding local minima, while the modest ascent is taken for leaving a minimum quickly. Furthermore, Tabu-Search is combined with an adaptive memory design to avoid cycling or returning. The highly accurate exploration of the phase space by Tabu-Search is often too expensive for complex optimization problems. Therefore, an algorithm for diversification of the search is required. After exploration of the proximity of the search space, the algorithm would guide the search to new and hopefully promising parts of the phase space. First application of GOTS to conformational search revealed weaknesses in the diversification search and the modest ascent part. On the one hand, the original methodology for diversification is insufficiently diverse. The algorithm is considerably improved by combining the more local GOTS with the wider searching Basin Hopping (BH) approach. The second weak point is a too inaccurate and inefficient modest ascent strategy. Analysis of common transition state search algorithms lead to the adaption of the Dimer-method to the Tabu-Search approach. The Dimer-method only requires the first derivatives for locating the closest transition state. For conformational search, dihedral angles are usually the most flexible degrees of freedom. Therefore, only those are used in the Dimer-method for leaving a local minimum. Furthermore, the exact localization of the reaction pathway and the transition state is not necessary as the local minimum position should only be departed as fast as possible. This allows for larger step sizes during the Dimer-search. In the following optimization step, all coordinates are relaxed to remove possible strains in the system. The new Tabu-Search method with Dimer-search delivers more and improved minima. Furthermore, the approach is faster for larger systems. For a system with approximately 1200 atoms, an acceleration of 40 was measured. The new approach was compared to Molecular Dynamics with optimization (MD), Simulated Annealing (SA), and BH with the help of conformational search problems of bio-organic systems. In all cases, a better performance was found. A comparison to the Monte Carlo Multiple Minima/Low Mode Sampling (MCMM/LM) method proved the outstanding performance of the new Tabu-Search approach. The solvation of the chignolin protein further revealed the possibility of uncovering discrepancies between the employed theoretical model and the experimental starting structure. Ligand optimization for improvement of x-ray structures was one further new application field. Besides the global optimization, the search for transition states and reaction pathways is also of paramount importance. These points describe different transitions of stable states. Therefore, a new approach for the exploration of such cases was developed. The new approach is based on a global minimization of a hyperplane being perpendicular to the reaction coordinate. Minima of this reduced phase space belong to traces of transition states between reactant and product states on the unchanged hypersurface. Optimization to the closest transition state using the Dimer-method delivers paths lying between the initial and the final state. An iterative approach finally yields complex reaction pathways with many intermediate local minima. The PathOpt algorithm was tested by means of rearrangements of argon clusters showing very promising results.}, subject = {Globale Optimierung}, language = {en} }