@phdthesis{Dengel2013, author = {Dengel, Radu-Gabriel}, title = {Fabrication of magnetic artificial atoms}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103162}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {This thesis presents the detailed development of the fabrication process and the first observations of artificial magnetic atoms from the II-VI diluted magnetic semiconductor alloy (Zn,Cd,Be,Mn)Se. In order to manufacture the vertical quantum dot device which exhibits artificial atom behavior a number of development steps are conducted. First, the II-VI heterostructure is adjusted for the linear transport regime. Second, state of the art vertical quantum dot fabrication techniques in the III-V material system are investigated regarding their portability to the II-VI heterostructure. And third, new approaches to the fabrication process are developed, taking into account the complexity of the heterostructure and its physical properties. Finally a multi-step fabrication process is presented, which is built up from electron beam and optical lithography, dry and wet etching and insulator deposition. This process allows for the processing of pillars with diameters down to 200 nm with an insulating dielectric and gate. Preliminary transport data on the fabricated vertical quantum dots are presendted confirming the magnetic nature of the resulting artificial atoms.}, subject = {Zwei-Sechs-Halbleiter}, language = {en} } @phdthesis{Frey2011, author = {Frey, Alexander}, title = {Spin-Dependent Tunneling and Heterovalent Heterointerface Effects in Diluted Magnetic II-VI Semiconductor Heterostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78133}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {The contribution of the present thesis consists of three parts. They are centered around investigating certain semiconductor heterointerfaces relevant to spin injection, exploring novel, diluted magnetic single barrier tunneling structures, and further developing diluted magnetic II-VI resonant tunneling diodes.}, subject = {Zwei-Sechs-Halbleiter}, language = {en} } @phdthesis{Bass2011, author = {Baß, Utz}, title = {Analysis of MBE-grown II-VI Hetero-Interfaces and Quantum-Dots by Raman Spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73413}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {The material system of interest in this thesis are II-VI-semiconductors. The first part of this thesis focuses on the formation of self-assembled CdSe-based quantum dots (QD) on ZnSe. The lattice constants of ZnSe and CdSe differ as much as about 7\\% and therefore a CdSe layer grown on top of ZnSe experiences a huge strain. The aspired strain relief constitutes in the self-assembly of QDs (i.e. a roughened layer structure). Additionally, this QD layer is intermixed with Zn as this is also a possibility to decrease the strain in the layer. For CdSe on ZnSe, in Molecular Beam Epitaxy (MBE), various QD growth procedures were analysed with respect to the resulting Cd-content of the non-stoichiometric ternary (Zn,Cd)Se. The evaluation was performed by Raman Spectroscopy as the phonon frequency depends on the Cd-content. The second part of the thesis emphasis on the interface properties of n-ZnSe on n-GaAs. Different growth start procedures of the ZnSe epilayer may lead to different interface configurations with characteristic band-offsets and carrier depletion layer widths. The analysis is mainly focused on the individual depletion layer widths in the GaAs and ZnSe. This non-destructive analysis is performed by evaluating the Raman signal which comprises of phonon scattering from the depleted regions and coupled plasmon-phonon scattering from regions with free carriers.}, subject = {Zwei-Sechs-Halbleiter}, language = {en} } @phdthesis{Schumm2008, author = {Schumm, Marcel}, title = {ZnO-based semiconductors studied by Raman spectroscopy: semimagnetic alloying, doping, and nanostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37045}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {ZnO-based semiconductors were studied by Raman spectroscopy and complementary methods (e.g. XRD, EPS) with focus on semimagnetic alloying with transition metal ions, doping (especially p-type doping with nitrogen as acceptor), and nanostructures (especially wet-chemically synthesized nanoparticles).}, subject = {Wide-gap-Halbleiter}, language = {en} } @phdthesis{Koenig2007, author = {K{\"o}nig, Markus}, title = {Spin-related transport phenomena in HgTe-based quantum well structures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27301}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/HgCdTe quantum well structures. This material exhibits peculiar band structure properties, which result in a strong spin-orbit interaction of the Rashba type. An inverted band structure, i.e., a reversed ordering of the energy states in comparison to common semiconductors, is obtained for quantum well layers above a critical thickness. Furthermore, the band structure properties can be controlled in the experiments by moderate gate voltages. Most prominently, the type of carriers in HgTe quantum wells can be changed from n to p due to the narrow energy gap. Along with the inverted band structure, this unique transition is the basis for the demonstration of the Quantum Spin Hall state, which is characterized by the existence of two one-dimensional spin-polarized edge states propagating in opposite directions, while the Fermi level in the bulk is in the energy gap. Since elastic scattering is suppressed by time reversal symmetry, a quantized conductance for charge and spin transport is predicted. Our experiments provide the first experimental demonstration of the QSH state. For samples with characteristic dimensions below the inelastic mean free path, charge conductance close to the expected value of 2e^2/h has been observed. Strong indication for the edge state transport was found in the experiments as well. For large samples, potential fluctuations lead to the appearance of local n-conducting regions which are considered to be the dominant source of backscattering. When time reversal symmetry is broken in a magnetic field, elastic scattering becomes possible and conductance is significantly suppressed. The suppression relies on a dominant orbital effect in a perpendicular field and a smaller Zeeman-like effect present for any field direction. For large perpendicular fields, a re-entrant quantum Hall state appears. This unique property is directly related to the non-trivial QSH insulator state. While clear evidence for the properties of charge transport was provided, the spin properties could not be addressed. This might be the goal of future experiments. In another set of experiments, the intrinsic spin Hall effect was studied. Its investigation was motivated by the possibility to create and to detect pure spin currents and spin accumulation. A non-local charging attributed to the SHE has been observed in a p-type H-shaped structure with large SO interaction, providing the first purely electrical demonstration of the SHE in a semiconductor system. A possibly more direct way to study the spin Hall effects opens up when the spin properties of the QSH edge states are taken into account. Then, the QSH edge states can be used either as an injector or a detector of spin polarization, depending on the actual configuration of the device. The experimental results indicate the existence of both intrinsic SHE and the inverse SHE independently of each other. If a spin-polarized current is injected from the QSH states into a region with Rashba SO interaction, the precession of the spin can been observed via the SHE. Both the spin injection and precession might be used for the realization of a spin-FET similar to the one proposed by Datta and Das. Another approach for the realization of a spin-based FET relies on a spin-interference device, in which the transmission is controlled via the Aharonov-Casher phase and the Berry phase, both due to the SO interaction. In the presented experiments, ring structures with tuneable SO coupling were studied. A complex interference pattern is observed as a function of external magnetic field and gate voltage. The dependence on the Rashba splitting is attributed to the Aharonov-Casher phase, whereas effects due to the Berry phase remain unresolved. This interpretation is confirmed by theoretical calculations, where multi-channel transport through the device has been assumed in agreement with the experimental results. Thus, our experiments provide the first direct observation of the AC effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSHE relies on the peculiar band structure of the material and the existence of both the SHE and the AC effect is a consequence of the substantial spin-orbit interaction. While convincing results have been obtained for the various effects, several questions can not be fully answered yet. Some of them may be addressed by more extensive studies on devices already available. Other issues, however, ask, e.g., for further advances in sample fabrication or new approaches by different measurements techniques. Thus, future experiments may provide new, compelling insights for both the effects discussed in this thesis and, more generally, other spin-orbit related transport properties.}, subject = {Spin-Bahn-Wechselwirkung}, language = {en} } @phdthesis{Babocsi2005, author = {Babocsi, Krisztina}, title = {Characterization of II-VI semiconductor nanostructures by low wavenumber raman- and four-wave-mixing spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-12551}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Es ist bekannt, dass r{\"a}umlich eingeschr{\"a}nkte Ladungstr{\"a}ger in niederdimensionalen Halbleitern zur Verst{\"a}rkung optischer und elektronischer Eigenschaften solcher Nanostrukturen beitragen. Die Physik des "Quantum Confinements" ist trotz umfangreicher Nachforschungen noch immer nicht v{\"o}llig verstanden. Die vorliegende Arbeit beinhaltet eine qualitative Studie quasi-nulldimensionaler II-VI Halbleiter Nanostrukturen. Es wurden handels{\"u}bliche und w{\"a}rmebehandelte CdSxSe1-x Quantenpunkte (QDs) mittels linearer und nicht-linearer Spektroskopie untersucht. Im Rahmen nicht-resonanter Raman Spektroskopie wurden Schl{\"u}sseleigenschaften der QDs, wie z.B. der Durchmesser und die Gr{\"o}ßenverteilung, bestimmt. Die Anordnung der Energieniveaus in einer atom-{\"a}hnlichen Struktur hat die Verst{\"a}rkung der Intensit{\"a}t akustischer Phononen zur Folge, welche im Bulk nicht nachgewiesen werden k{\"o}nnen. In Nanokristallen sind nur zwei Sorten akustischer Vibrationen Raman-aktiv: Die kugelsymmetrischen (l = 0) und die quadrupolaren (l=2) Vibrationen, die durch linear polarisierte Laserpulse selektiv angeregt werden k{\"o}nnen. Die Gr{\"o}ße der QDs wurde durch Ber{\"u}cksichtigen der Abh{\"a}ngigkeit der Vibrationsfrequenz akustischer Phononen von dem Durchmesser des Nanokristalls berechnet. Die Gr{\"o}ßenverteilung der QDs ist aus dem normalisierten FWHM ("full width at half maximum") der symmetrischen Vibration bestimmt worden. Die Relaxationsprozesse in Quantenpunkten finden auf einer Pikosekundenskala statt, zu deren Untersuchung ultraschnelle Spektroskopiemethoden mit Laserpulsen im Femtosekundenbereich notwendig sind. Es wurden in einer Glasmatrix eingebettete CdS0.6Se0.4 QDs von 9.1 nm Durchmesser mittels Fs-VWM- und Fs-PPT-Spektroskopie untersucht. In beiden F{\"a}llen wurden zirkular polarisierte Fs-Laserpulse eingesetzt. Es ist gezeigt worden, dass die Auswahlregeln f{\"u}r die Polarisation sehr stark von der Symmetrie der Nanokristalle abh{\"a}ngig sind. Es ist gezeigt worden, dass die angeregten Nanokristalle der Symmetriegruppe C2v oder niedriger angeh{\"o}ren und der Nachweis einer hexagonalen Struktur der Nanokristalle wurde erbracht. Die G{\"u}ltigkeit des Vier-Niveau-Modells wurde ebenfalls nachgewiesen. Dieses Modell enth{\"a}lt einen Grundzustand, zwei Exzitonzust{\"a}nde und einen Biexzitonenzustand. Das Entstehen der VWM- und PPT-Signale in verbotenen Polarisationsgeometrien wurde durch das Auftreten starker Coulomb-Wechselwirkung zwischen Exzitonen, die sich in demselben QD befinden, und durch die niedrige Symmetrie der QDs erkl{\"a}rt. Aufgrund der quadratischen Abh{\"a}ngigkeit der Intensit{\"a}ten der VWM-Signale von der Intensit{\"a}t der PPT-Signale, konnten die Ergebnisse der VWM-Messungen durch PPT-Untersuchungen gepr{\"u}ft werden. Die Effizienz der Methode der zirkular polarisierten Fs-VWM-Spektroskopie wurde bei der Untersuchung von in einer Glasmatrix eingebetteten w{\"a}rmebehandelten CdSe Quantenpunkten noch einmal best{\"a}tigt. Die Aufmerksamkeit auf Nicht-Phonon-Relaxationsmechanismen des Grund- und angeregten Zustands des Exzitons gerichtet. Außerdem konnte die Abh{\"a}ngigkeit der Kristallasymmetrie von der Nanopartikelgr{\"o}ße und von den Wachstumsbedingungen abgesch{\"a}tzt werden. Es zeigte sich, dass qualitativ hochwertige Quantenpunkte am effizientesten durch lange Wachstumszeiten bei niedrigen Temperaturen hergestellt werden k{\"o}nnen. Dabei haben die Nanokristalle gen{\"u}gend Zeit f{\"u}r „Nukleation" und nehmen eine symmetrischere Form an. Außerdem ist es nachgewiesen worden, dass die Exzitonrelaxation sehr stark von den Coulomb-Wechselwirkungen zwischen den Ladungstr{\"a}gern abh{\"a}ngt. Die Relaxationsprozesse der Exzitonen werden sowohl durch die Auger Selbstionisation, als auch durch den anschließenden Einfang der Ladungstr{\"a}ger in tiefen Fallen (an der Quantenpunktoberfl{\"a}che und/oder in der dielektrischen Matrix) deutlich verlangsamt. Dadurch wird die Lebensdauer der Exzitonen deutlich verk{\"u}rzt und liegt im Pikosekundenbereich. Die Relaxation der Exzitonen von h{\"o}heren Energieniveaus in den Grundzustand erfolgt auch auf zwei Wegen: Am Anfang des Relaxationsprozesses (t31 ~ 200 fs) ist Auger-Thermalisierung der Ladungstr{\"a}ger f{\"u}r die Relaxation des Elektrons von seinem angeregten 1pe Zustand auf sein niedrigeres 1se Energieniveau verantwortlich. W{\"a}renddessen erfolgt die Relaxation des Lochs sehr schnell {\"u}ber sein dichtes Spektrum von Valenzbandzust{\"a}nden. Diesem Prozess folgt unmittelbar der Einfang der Ladungstr{\"a}ger in tiefen Fallen, die sich an der Nanokristall-Glasmatrix-Grenzfl{\"a}che befinden. Diese Fallen sind eine direkte Konsequenz der Asymmetrie des Nanokristalls: je zahlreicher und je tiefer die Fallen, desto h{\"o}her ist die Asymmetrie des Kristalls. Im Rahmen dieser Arbeit ist eine komplette Charakterisierung der in einer Glas- matrix eingebetteten CdSSe-Quantenpunkte gelungen. Die wichtigsten Eigenschaften, wie z.B. die Gr{\"o}ße und die Gr{\"o}ßenverteilung der Quantenpunkte, sind durch polarisierte Raman-Messungen bestimmt worden. Um ein komplettes Bild {\"u}ber die Nanokristalle zu bekommen, sind weitere nicht-lineare Spektroskopiemethoden eingesetzt worden. Polarisierte VWM Spektroskopie wurde zur Untersuchung verschiedener Quantenpunktensembles erfolgreich eingesetzt und daraus sind wertvolle Informationen {\"u}ber die Symmetrie der Nanokristalle gewonnen worden. Weiterhin sind die Exzitonrelaxationsmechanismen beschrieben worden, die die Verst{\"a}rkung der optischen nicht-linearen Eigenschaften und starke Coulomb-Wechselwirkungen zwischen Exzitonen erkl{\"a}ren. Durch die Untersuchung der Auswirkung verschiedener Wachstumsbedingungen auf die Symmetrie der QDs stellt diese Arbeit einen erg{\"a}nzenden Beitrag zu Herstellungsverfahren qualitativ hochwertiger Quantenpunkte dar.}, subject = {Zwei-Sechs-Halbleiter}, language = {en} }