@article{SungKimFimmeletal.2015, author = {Sung, Jooyoung and Kim, Pyosang and Fimmel, Benjamin and W{\"u}rthner, Frank and Kim, Dongho}, title = {Direct observation of ultrafast coherent exciton dynamics in helical π-stacks of self-assembled perylene bisimides}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {8646}, doi = {10.1038/ncomms9646}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148157}, year = {2015}, abstract = {Ever since the discovery of dye self-assemblies in nature, there have been tremendous efforts to exploit biomimetic supramolecular assemblies for tailored artificial photon processing materials. This feature necessarily has resulted in an increasing demand for understanding exciton dynamics in the dye self-assemblies. In a sharp contrast with pi-type aggregates, however, the detailed observation of exciton dynamics in H-type aggregates has remained challenging. In this study, as we succeed in measuring transient fluorescence from Frenkel state of π-stacked perylene tetracarboxylic acid bisimide dimer and oligomer aggregates, we present an experimental demonstration on Frenkel exciton dynamics of archetypal columnar π-π stacks of dyes. The analysis of the vibronic peak ratio of the transient fluorescence spectra reveals that unlike the simple π-stacked dimer, the photoexcitation energy in the columnar π-stacked oligomer aggregates is initially delocalized over at least three molecular units and moves coherently along the chain in tens of femtoseconds, preceding excimer formation process.}, language = {en} } @article{JinAllisonKaufmannetal.2012, author = {Jin, Jing and Allison, Brendan Z. and Kaufmann, Tobias and K{\"u}bler, Andrea and Zhang, Yu and Wang, Xingyu and Cichocki, Andrzej}, title = {The Changing Face of P300 BCIs: A Comparison of Stimulus Changes in a P300 BCI Involving Faces, Emotion, and Movement}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {11}, doi = {10.1371/journal.pone.0049688}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134173}, pages = {e49688}, year = {2012}, abstract = {Background: One of the most common types of brain-computer interfaces (BCIs) is called a P300 BCI, since it relies on the P300 and other event-related potentials (ERPs). In the canonical P300 BCI approach, items on a monitor flash briefly to elicit the necessary ERPs. Very recent work has shown that this approach may yield lower performance than alternate paradigms in which the items do not flash but instead change in other ways, such as moving, changing colour or changing to characters overlaid with faces. Methodology/Principal Findings: The present study sought to extend this research direction by parametrically comparing different ways to change items in a P300 BCI. Healthy subjects used a P300 BCI across six different conditions. Three conditions were similar to our prior work, providing the first direct comparison of characters flashing, moving, and changing to faces. Three new conditions also explored facial motion and emotional expression. The six conditions were compared across objective measures such as classification accuracy and bit rate as well as subjective measures such as perceived difficulty. In line with recent studies, our results indicated that the character flash condition resulted in the lowest accuracy and bit rate. All four face conditions (mean accuracy >91\%) yielded significantly better performance than the flash condition (mean accuracy = 75\%). Conclusions/Significance: Objective results reaffirmed that the face paradigm is superior to the canonical flash approach that has dominated P300 BCIs for over 20 years. The subjective reports indicated that the conditions that yielded better performance were not considered especially burdensome. Therefore, although further work is needed to identify which face paradigm is best, it is clear that the canonical flash approach should be replaced with a face paradigm when aiming at increasing bit rate. However, the face paradigm has to be further explored with practical applications particularly with locked-in patients.}, language = {en} } @article{BorchersMuellerSynofziketal.2013, author = {Borchers, Svenja and M{\"u}ller, Laura and Synofzik, Matthis and Himmelbach, Marc}, title = {Guidelines and quality measures for the diagnosis of optic ataxia}, series = {Frontiers in Human Neuroscience}, volume = {7}, journal = {Frontiers in Human Neuroscience}, number = {324}, issn = {1662-5161}, doi = {10.3389/fnhum.2013.00324}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122439}, year = {2013}, abstract = {Since the first description of a systematic mis-reaching by Balint in 1909, a reasonable number of patients showing a similar phenomenology, later termed optic ataxia (OA), has been described. However, there is surprising inconsistency regarding the behavioral measures that are used to detect OA in experimental and clinical reports, if the respective measures are reported at all. A typical screening method that was presumably used by most researchers and clinicians, reaching for a target object in the peripheral visual space, has never been evaluated. We developed a set of instructions and evaluation criteria for the scoring of a semi-standardized version of this reaching task. We tested 36 healthy participants, a group of 52 acute and chronic stroke patients, and 24 patients suffering from cerebellar ataxia. We found a high interrater reliability and a moderate test-retest reliability comparable to other clinical instruments in the stroke sample. The calculation of cut-off thresholds based on healthy control and cerebellar patient data showed an unexpected high number of false positives in these samples due to individual outliers that made a considerable number of errors in peripheral reaching. This study provides first empirical data from large control and patient groups for a screening procedure that seems to be widely used but rarely explicitly reported and prepares the grounds for its use as a standard tool for the description of patients who are included in single case or group studies addressing optic ataxia similar to the use of neglect, extinction, or apraxia screening tools.}, language = {en} } @article{StaabHottowitzSohnsetal.2014, author = {Staab, Wieland and Hottowitz, Ralf and Sohns, Christian and Sohns, Jan Martin and Gilbert, Fabian and Menke, Jan and Niklas, Andree and Lotz, Joachim}, title = {Accelerometer and Gyroscope Based Gait Analysis Using Spectral Analysis of Patients with Osteoarthritis of the Knee}, series = {Journal of Physical Therapy Science}, volume = {26}, journal = {Journal of Physical Therapy Science}, number = {7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115907}, pages = {997-1002}, year = {2014}, abstract = {[Purpose] A wide variety of accelerometer tools are used to estimate human movement, but there are no adequate data relating to gait symmetry parameters in the context of knee osteoarthritis. This study's purpose was to evaluate a 3D-kinematic system using body-mounted sensors (gyroscopes and accelerometers) on the trunk and limbs. This is the first study to use spectral analysis for data post processing. [Subjects] Twelve patients with unilateral knee osteoarthritis (OA) (10 male) and seven age-matched controls (6 male) were studied. [Methods] Measurements with 3-D accelerometers and gyroscopes were compared to video analysis with marker positions tracked by a six-camera optoelectronic system (VICON 460, Oxford Metrics). Data were recorded using the 3D-kinematic system. [Results] The results of both gait analysis systems were significantly correlated. Five parameters were significantly different between the knee OA and control groups. To overcome time spent in expensive post-processing routines, spectral analysis was performed for fast differentiation between normal gait and pathological gait signals using the 3D-kinematic system. [Conclusions] The 3D-kinematic system is objective, inexpensive, accurate and portable, and allows long-term recordings in clinical, sport as well as ergonomic or functional capacity evaluation (FCE) settings. For fast post-processing, spectral analysis of the recorded data is recommended.}, language = {en} }