@article{SchmidtFantuzziKlopfetal.2021, author = {Schmidt, Paul and Fantuzzi, Felipe and Klopf, Jonas and Schr{\"o}der, Niklas B. and Dewhurst, Rian D. and Braunschweig, Holger and Engel, Volker and Engels, Bernd}, title = {Twisting versus delocalization in CAAC- and NHC-stabilized boron-based biradicals: the roles of sterics and electronics}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {16}, doi = {10.1002/chem.202004619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256636}, pages = {5160-5170}, year = {2021}, abstract = {Twisted boron-based biradicals featuring unsaturated C\(_2\)R\(_2\) (R=Et, Me) bridges and stabilization by cyclic (alkyl)(amino)carbenes (CAACs) were recently prepared. These species show remarkable geometrical and electronic differences with respect to their unbridged counterparts. Herein, a thorough computational investigation on the origin of their distinct electrostructural properties is performed. It is shown that steric effects are mostly responsible for the preference for twisted over planar structures. The ground-state multiplicity of the twisted structure is modulated by the σ framework of the bridge, and different R groups lead to distinct multiplicities. In line with the experimental data, a planar structure driven by delocalization effects is observed as global minimum for R=H. The synthetic elusiveness of C\(_2\)R\(_2\)-bridged systems featuring N-heterocyclic carbenes (NHCs) was also investigated. These results could contribute to the engineering of novel main group biradicals.}, language = {en} } @article{FranzsicoFantuzziCardozoetal.2021, author = {Franzsico, Marcos A. S. and Fantuzzi, Felipe and Cardozo, Thiago M. and Esteves, Pierre M. and Engels, Bernd and Oliveira, Ricardo R.}, title = {Taming the Antiferromagnetic Beast: Computational Design of Ultrashort Mn-Mn Bonds Stabilized by N-Heterocyclic Carbenes}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {47}, doi = {10.1002/chem.202101116}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256874}, pages = {12126-12136}, year = {2021}, abstract = {The development of complexes featuring low-valent, multiply bonded metal centers is an exciting field with several potential applications. In this work, we describe the design principles and extensive computational investigation of new organometallic platforms featuring the elusive manganese-manganese bond stabilized by experimentally realized N-heterocyclic carbenes (NHCs). By using DFT computations benchmarked against multireference calculations, as well as MO- and VB-based bonding analyses, we could disentangle the various electronic and structural effects contributing to the thermodynamic and kinetic stability, as well as the experimental feasibility, of the systems. In particular, we explored the nature of the metal-carbene interaction and the role of the ancillary η\(^{6}\) coordination to the generation of Mn\(_{2}\) systems featuring ultrashort metal-metal bonds, closed-shell singlet multiplicities, and positive adiabatic singlet-triplet gaps. Our analysis identifies two distinct classes of viable synthetic targets, whose electrostructural properties are thoroughly investigated.}, language = {en} }