@article{KleberChenMichelsetal.2016, author = {Kleber, J{\"o}rg and Chen, Yi-Chun and Michels, Birgit and Saumweber, Timo and Schleyer, Michael and K{\"a}hne, Thilo and Buchner, Erich and Gerber, Bertram}, title = {Synapsin is required to "boost" memory strength for highly salient events}, series = {Learning and Memory}, volume = {23}, journal = {Learning and Memory}, number = {1}, doi = {10.1101/lm.039685.115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191440}, pages = {9-20}, year = {2016}, abstract = {Synapsin is an evolutionarily conserved presynaptic phosphoprotein. It is encoded by only one gene in the Drosophila genome and is expressed throughout the nervous system. It regulates the balance between reserve and releasable vesicles, is required to maintain transmission upon heavy demand, and is essential for proper memory function at the behavioral level. Task-relevant sensorimotor functions, however, remain intact in the absence of Synapsin. Using an odor-sugar reward associative learning paradigm in larval Drosophila, we show that memory scores in mutants lacking Synapsin (syn\(^{97}\)) are lower than in wild-type animals only when more salient, higher concentrations of odor or of the sugar reward are used. Furthermore, we show that Synapsin is selectively required for larval short-term memory. Thus, without Synapsin Drosophila larvae can learn and remember, but Synapsin is required to form memories that match in strength to event salience-in particular to a high saliency of odors, of rewards, or the salient recency of an event. We further show that the residual memory scores upon a lack of Synapsin are not further decreased by an additional lack of the Sap47 protein. In combination with mass spectrometry data showing an up-regulated phosphorylation of Synapsin in the larval nervous system upon a lack of Sap47, this is suggestive of a functional interdependence of Synapsin and Sap47.}, language = {en} } @article{SchmittFunkBlumetal.2016, author = {Schmitt, Dominique and Funk, Natalia and Blum, Robert and Asan, Esther and Andersen, Lill and R{\"u}licke, Thomas and Sendtner, Michael and Buchner, Erich}, title = {Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons}, series = {Histochemistry and Cell Biology}, volume = {146}, journal = {Histochemistry and Cell Biology}, number = {4}, doi = {10.1007/s00418-016-1457-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187258}, pages = {489-512}, year = {2016}, abstract = {Synapse-associated protein 1 (Syap1/BSTA) is the mammalian homologue of Sap47 (synapse-associated protein of 47 kDa) in Drosophila. Sap47 null mutant larvae show reduced short-term synaptic plasticity and a defect in associative behavioral plasticity. In cultured adipocytes, Syap1 functions as part of a complex that phosphorylates protein kinase B alpha/Akt1 (Akt1) at Ser\(^{473}\) and promotes differentiation. The role of Syap1 in the vertebrate nervous system is unknown. Here, we generated a Syap1 knock-out mouse and show that lack of Syap1 is compatible with viability and fertility. Adult knock-out mice show no overt defects in brain morphology. In wild-type brain, Syap1 is found widely distributed in synaptic neuropil, notably in regions rich in glutamatergic synapses, but also in perinuclear structures associated with the Golgi apparatus of specific groups of neuronal cell bodies. In cultured motoneurons, Syap1 is located in axons and growth cones and is enriched in a perinuclear region partially overlapping with Golgi markers. We studied in detail the influence of Syap1 knockdown and knockout on structure and development of these cells. Importantly, Syap1 knockout does not affect motoneuron survival or axon growth. Unexpectedly, neither knockdown nor knockout of Syap1 in cultured motoneurons is associated with reduced Ser\(^{473}\) or Thr\(^{308}\) phosphorylation of Akt. Our findings demonstrate a widespread expression of Syap1 in the mouse central nervous system with regionally specific distribution patterns as illustrated in particular for olfactory bulb, hippocampus, and cerebellum.}, language = {en} } @article{vonCollenbergSchmittRuelickeetal.2019, author = {von Collenberg, Cora R. and Schmitt, Dominique and R{\"u}licke, Thomas and Sendtner, Michael and Blum, Robert and Buchner, Erich}, title = {An essential role of the mouse synapse-associated protein Syap1 in circuits for spontaneous motor activity and rotarod balance}, series = {Biology Open}, volume = {8}, journal = {Biology Open}, doi = {10.1242/bio.042366}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201986}, pages = {bio042366}, year = {2019}, abstract = {Synapse-associated protein 1 (Syap1) is the mammalian homologue of synapse-associated protein of 47 kDa (Sap47) in Drosophila. Genetic deletion of Sap47 leads to deficiencies in short-term plasticity and associative memory processing in flies. In mice, Syap1 is prominently expressed in the nervous system, but its function is still unclear. We have generated Syap1 knockout mice and tested motor behaviour and memory. These mice are viable and fertile but display distinct deficiencies in motor behaviour. Locomotor activity specifically appears to be reduced in early phases when voluntary movement is initiated. On the rotarod, a more demanding motor test involving control by sensory feedback, Syap1-deficient mice dramatically fail to adapt to accelerated speed or to a change in rotation direction. Syap1 is highly expressed in cerebellar Purkinje cells and cerebellar nuclei. Thus, this distinct motor phenotype could be due to a so-far unknown function of Syap1 in cerebellar sensorimotor control. The observed motor defects are highly specific since other tests in the modified SHIRPA exam, as well as cognitive tasks like novel object recognition, Pavlovian fear conditioning, anxiety-like behaviour in open field dark-light transition and elevated plus maze do not appear to be affected in Syap1 knockout mice.}, language = {en} } @article{ParthoChenBrauckhoffetal.2011, author = {Partho, Halder and Chen, Yi-chun and Brauckhoff, Janine and Hofbauer, Alois and Dabauvalle, Marie-Christine and Lewandrowski, Urs and Winkler, Christiane and Sickmann, Albert and Buchner, Erich}, title = {Identification of Eps15 as Antigen Recognized by the Monoclonal Antibodies aa2 and ab52 of the Wuerzburg Hybridoma Library against Drosophila Brain}, series = {PLoS One}, volume = {6}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0029352}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137957}, pages = {e29352}, year = {2011}, abstract = {The Wuerzburg Hybridoma Library against the Drosophila brain represents a collection of around 200 monoclonal antibodies that bind to specific structures in the Drosophila brain. Here we describe the immunohistochemical staining patterns, the Western blot signals of one- and two-dimensional electrophoretic separation, and the mass spectrometric characterization of the target protein candidates recognized by the monoclonal antibodies aa2 and ab52 from the library. Analysis of a mutant of a candidate gene identified the Drosophila homolog of the Epidermal growth factor receptor Pathway Substrate clone 15 (Eps15) as the antigen for these two antibodies.}, language = {en} } @article{BuchnerBlancoRedondoBunzetal.2013, author = {Buchner, Erich and Blanco Redondo, Beatriz and Bunz, Melanie and Halder, Partho and Sadanandappa, Madhumala K. and M{\"u}hlbauer, Barbara and Erwin, Felix and Hofbauer, Alois and Rodrigues, Veronica and VijayRaghavan, K. and Ramaswami, Mani and Rieger, Dirk and Wegener, Christian and F{\"o}rster, Charlotte}, title = {Identification and Structural Characterization of Interneurons of the Drosophila Brain by Monoclonal Antibodies of the W{\"u}rzburg Hybridoma Library}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0075420}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97109}, year = {2013}, abstract = {Several novel synaptic proteins have been identified by monoclonal antibodies (mAbs) of the W{\"u}rzburg hybridoma library generated against homogenized Drosophila brains, e.g. cysteine string protein, synapse-associated protein of 47 kDa, and Bruchpilot. However, at present no routine technique exists to identify the antigens of mAbs of our library that label only a small number of cells in the brain. Yet these antibodies can be used to reproducibly label and thereby identify these cells by immunohistochemical staining. Here we describe the staining patterns in the Drosophila brain for ten mAbs of the W{\"u}rzburg hybridoma library. Besides revealing the neuroanatomical structure and distribution of ten different sets of cells we compare the staining patterns with those of antibodies against known antigens and GFP expression patterns driven by selected Gal4 lines employing regulatory sequences of neuronal genes. We present examples where our antibodies apparently stain the same cells in different Gal4 lines suggesting that the corresponding regulatory sequences can be exploited by the split-Gal4 technique for transgene expression exclusively in these cells. The detection of Gal4 expression in cells labeled by mAbs may also help in the identification of the antigens recognized by the antibodies which then in addition to their value for neuroanatomy will represent important tools for the characterization of the antigens. Implications and future strategies for the identification of the antigens are discussed.}, language = {en} }