@article{ThibaudeauTaubenbergerHolzapfeletal.2014, author = {Thibaudeau, Laure and Taubenberger, Anna V. and Holzapfel, Boris M. and Quent, Verena M. and Fuehrmann, Tobias and Hesami, Parisa and Brown, Toby D. and Dalton, Paul D. and Power, Carl A. and Hollier, Brett G. and Hutmacher, Dietmar W.}, title = {A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone}, series = {Disease Models \& Mechanisms}, volume = {7}, journal = {Disease Models \& Mechanisms}, number = {2}, doi = {10.1242/dmm.014076}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117466}, pages = {299-309}, year = {2014}, abstract = {The skeleton is a preferred homing site for breast cancer metastasis. To date, treatment options for patients with bone metastases are mostly palliative and the disease is still incurable. Indeed, key mechanisms involved in breast cancer osteotropism are still only partially understood due to the lack of suitable animal models to mimic metastasis of human tumor cells to a human bone microenvironment. In the presented study, we investigate the use of a human tissue-engineered bone construct to develop a humanized xenograft model of breast cancer-induced bone metastasis in a murine host. Primary human osteoblastic cell-seeded melt electrospun scaffolds in combination with recombinant human bone morphogenetic protein 7 were implanted subcutaneously in non-obese diabetic/severe combined immunodeficient mice. The tissue-engineered constructs led to the formation of a morphologically intact 'organ' bone incorporating a high amount of mineralized tissue, live osteocytes and bone marrow spaces. The newly formed bone was largely humanized, as indicated by the incorporation of human bone cells and human-derived matrix proteins. After intracardiac injection, the dissemination of luciferase-expressing human breast cancer cell lines to the humanized bone ossicles was detected by bioluminescent imaging. Histological analysis revealed the presence of metastases with clear osteolysis in the newly formed bone. Thus, human tissue-engineered bone constructs can be applied efficiently as a target tissue for human breast cancer cells injected into the blood circulation and replicate the osteolytic phenotype associated with breast cancer-induced bone lesions. In conclusion, we have developed an appropriate model for investigation of species-specific mechanisms of human breast cancer-related bone metastasis in vivo.}, language = {en} } @article{WeigandBoosTasbihietal.2016, author = {Weigand, Annika and Boos, Anja M. and Tasbihi, Kereshmeh and Beier, Justus P. and Dalton, Paul D. and Schrauder, Michael and Horch, Raymund E. and Beckmann, Matthias W. and Strissel, Pamela L. and Strick, Reiner}, title = {Selective isolation and characterization of primary cells from normal breast and tumors reveal plasticity of adipose derived stem cells}, series = {Breast Cancer Research}, volume = {18}, journal = {Breast Cancer Research}, number = {32}, doi = {10.1186/s13058-016-0688-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164759}, year = {2016}, abstract = {Background There is a need to establish more cell lines from breast tumors in contrast to immortalized cell lines from metastatic effusions in order to represent the primary tumor and not principally metastatic biology of breast cancer. This investigation describes the simultaneous isolation, characterization, growth and function of primary mammary epithelial cells (MEC), mesenchymal cells (MES) and adipose derived stem cells (ADSC) from four normal breasts, one inflammatory and one triple-negative ductal breast tumors. Methods A total of 17 cell lines were established and gene expression was analyzed for MEC and MES (n = 42) and ADSC (n = 48) and MUC1, pan-KRT, CD90 and GATA-3 by immunofluorescence. DNA fingerprinting to track cell line identity was performed between original primary tissues and isolates. Functional studies included ADSC differentiation, tumor MES and MEC invasion co-cultured with ADSC-conditioned media (CM) and MES adhesion and growth on 3D-printed scaffolds. Results Comparative analysis showed higher gene expression of EPCAM, CD49f, CDH1 and KRTs for normal MEC lines; MES lines e.g. Vimentin, CD10, ACTA2 and MMP9; and ADSC lines e.g. CD105, CD90, CDH2 and CDH11. Compared to the mean of all four normal breast cell lines, both breast tumor cell lines demonstrated significantly lower ADSC marker gene expression, but higher expression of mesenchymal and invasion gene markers like SNAI1 and MMP2. When compared with four normal ADSC differentiated lineages, both tumor ADSC showed impaired osteogenic and chondrogenic but enhanced adipogenic differentiation and endothelial-like structures, possibly due to high PDGFRB and CD34. Addressing a functional role for overproduction of adipocytes, we initiated 3D-invasion studies including different cell types from the same patient. CM from ADSC differentiating into adipocytes induced tumor MEC 3D-invasion via EMT and amoeboid phenotypes. Normal MES breast cells adhered and proliferated on 3D-printed scaffolds containing 20 fibers, but not on 2.5D-printed scaffolds with single fiber layers, important for tissue engineering. Conclusion Expression analyses confirmed successful simultaneous cell isolations of three different phenotypes from normal and tumor primary breast tissues. Our cell culture studies support that breast-tumor environment differentially regulates tumor ADSC plasticity as well as cell invasion and demonstrates applications for regenerative medicine.}, language = {en} } @article{CastilhoHochleitnerWilsonetal.2018, author = {Castilho, Miguel and Hochleitner, Gernot and Wilson, Wouter and van Rietbergen, Bert and Dalton, Paul D. and Groll, J{\"u}rgen and Malda, Jos and Ito, Keita}, title = {Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, doi = {10.1038/s41598-018-19502-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222280}, year = {2018}, abstract = {Reinforcing hydrogels with micro-fibre scaffolds obtained by a Melt-Electrospinning Writing (MEW) process has demonstrated great promise for developing tissue engineered (TE) constructs with mechanical properties compatible to native tissues. However, the mechanical performance and reinforcement mechanism of the micro-fibre reinforced hydrogels is not yet fully understood. In this study, FE models, implementing material properties measured experimentally, were used to explore the reinforcement mechanism of fibre-hydrogel composites. First, a continuum FE model based on idealized scaffold geometry was used to capture reinforcement effects related to the suppression of lateral gel expansion by the scaffold, while a second micro-FE model based on micro-CT images of the real construct geometry during compaction captured the effects of load transfer through the scaffold interconnections. Results demonstrate that the reinforcement mechanism at higher scaffold volume fractions was dominated by the load carrying-ability of the fibre scaffold interconnections, which was much higher than expected based on testing scaffolds alone because the hydrogel provides resistance against buckling of the scaffold. We propose that the theoretical understanding presented in this work will assist the design of more effective composite constructs with potential applications in a wide range of TE conditions.}, language = {en} } @unpublished{SchaeferJanzenBakircietal.2019, author = {Schaefer, Natascha and Janzen, Dieter and Bakirci, Ezgi and Hrynevich, Andrei and Dalton, Paul D. and Villmann, Carmen}, title = {3D Electrophysiological Measurements on Cells Embedded within Fiber-Reinforced Matrigel}, series = {Advanced Healthcare Materials}, journal = {Advanced Healthcare Materials}, doi = {10.1002/adhm.201801226}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244194}, year = {2019}, abstract = {2D electrophysiology is often used to determine the electrical properties of neurons, while in the brain, neurons form extensive 3D networks. Thus, performing electrophysiology in a 3D environment provides a closer situation to the physiological condition and serves as a useful tool for various applications in the field of neuroscience. In this study, we established 3D electrophysiology within a fiber-reinforced matrix to enable fast readouts from transfected cells, which are often used as model systems for 2D electrophysiology. Using melt electrowriting (MEW) of scaffolds to reinforce Matrigel, we performed 3D electrophysiology on a glycine receptor-transfected Ltk-11 mouse fibroblast cell line. The glycine receptor is an inhibitory ion channel associated when mutated with impaired neuromotor behaviour. The average thickness of the MEW scaffold was 141.4 ± 5.7µm, using 9.7 ± 0.2µm diameter fibers, and square pore spacings of 100 µm, 200 µm and 400 µm. We demonstrate, for the first time, the electrophysiological characterization of glycine receptor-transfected cells with respect to agonist efficacy and potency in a 3D matrix. With the MEW scaffold reinforcement not interfering with the electrophysiology measurement, this approach can now be further adapted and developed for different kinds of neuronal cultures to study and understand pathological mechanisms under disease conditions.}, language = {en} } @article{RobinsonHutmacherDalton2019, author = {Robinson, Thomas M. and Hutmacher, Dietmar W. and Dalton, Paul D.}, title = {The next frontier in melt electrospinning: taming the jet}, series = {Advanced Functional Materials}, volume = {29}, journal = {Advanced Functional Materials}, doi = {10.1002/adfm.201904664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204819}, pages = {1904664}, year = {2019}, abstract = {There is a specialized niche for the electrohydrodynamic jetting of melts, from biomedical products to filtration and soft matter applications. The next frontier includes optics, microfluidics, flexible electronic devices, and soft network composites in biomaterial science and soft robotics. The recent emphasis on reproducibly direct-writing continual molten jets has enabled a spectrum of contemporary microscale 3D objects to be fabricated. One strong suit of melt processing is the capacity for the jet to solidify rapidly into a fiber, thus fixing a particular structure into position. The ability to direct-write complex and multiscaled architectures and structures has greatly contributed to a large number of recent studies, explicitly, toward fiber-hydrogel composites and fugitive inks, and has expanded into several biomedical applications such as cartilage, skin, periosteum, and cardiovascular tissue engineering. Following the footsteps of a publication that summarized melt electrowriting literature up to 2015, the most recent literature from then until now is reviewed to provide a continuous and comprehensive timeline that demonstrates the latest advances as well as new perspectives for this emerging technology.}, language = {en} } @article{KotzRischArnoldetal.2019, author = {Kotz, Frederik and Risch, Patrick and Arnold, Karl and Sevim, Semih and Puigmart{\´i}-Luis, Josep and Quick, Alexander and Thiel, Michael and Hrynevich, Andrei and Dalton, Paul D. and Helmer, Dorothea and Rapp, Bastian E.}, title = {Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-09497-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224787}, year = {2019}, abstract = {Fused silica glass is the preferred material for applications which require long-term chemical and mechanical stability as well as excellent optical properties. The manufacturing of complex hollow microstructures within transparent fused silica glass is of particular interest for, among others, the miniaturization of chemical synthesis towards more versatile, configurable and environmentally friendly flow-through chemistry as well as high-quality optical waveguides or capillaries. However, microstructuring of such complex three-dimensional structures in glass has proven evasive due to its high thermal and chemical stability as well as mechanical hardness. Here we present an approach for the generation of hollow microstructures in fused silica glass with high precision and freedom of three-dimensional designs. The process combines the concept of sacrificial template replication with a room-temperature molding process for fused silica glass. The fabricated glass chips are versatile tools for, among other, the advance of miniaturization in chemical synthesis on chip.}, language = {en} } @article{LiashenkoHrynevichDalton2020, author = {Liashenko, Ievgenii and Hrynevich, Andrei and Dalton, Paul D.}, title = {Designing Outside the Box: Unlocking the Geometric Freedom of Melt Electrowriting using Microscale Layer Shifting}, series = {Advanced Materials}, volume = {32}, journal = {Advanced Materials}, number = {28}, doi = {10.1002/adma.202001874}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217974}, year = {2020}, abstract = {Melt electrowriting, a high-resolution additive manufacturing technology, has so far been developed with vertical stacking of fiber layers, with a printing trajectory that is constant for each layer. In this work, microscale layer shifting is introduced through deliberately offsetting the printing trajectory for each printed layer. Inaccuracies during the printing of sinusoidal walls are corrected via layer shifting, resulting in accurate control of their geometry and mechanical properties. Furthermore, more substantial layer shifting allows stacking of fiber layers in a horizontal manner, overcoming the electrostatic autofocusing effect that favors vertical layer stacking. Novel nonlinear geometries, such as overhangs, wall texturing and branching, and smooth and abrupt changes in printing trajectory are presented, demonstrating the flexibility of the layer shifting approach beyond the state-of-the-art. The practice of microscale layer shifting for melt electrowriting enables more complex geometries that promise to have a profound impact on the development of products in a broad range of applications.}, language = {en} } @article{WangSarwatWangetal.2020, author = {Wang, Shuang and Sarwat, Mariah and Wang, Peng and Surrao, Denver C. and Harkin, Damien G. and St John, James A. and Bolle, Eleonore C. L. and Forget, Aurelien and Dalton, Paul D. and Dargaville, Tim R.}, title = {Hydrogels with Cell Adhesion Peptide-Decorated Channel Walls for Cell Guidance}, series = {Macromolecular Rapid Communications}, volume = {41}, journal = {Macromolecular Rapid Communications}, number = {15}, doi = {10.1002/marc.202000295}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218031}, year = {2020}, abstract = {A method is reported for making hollow channels within hydrogels decorated with cell-adhesion peptides exclusively at the channel surface. Sacrificial fibers of different diameters are used to introduce channels within poly(ethylene glycol) hydrogels crosslinked with maleimide-thiol chemistry, which are backfilled with a cysteine-containing peptide solution which is conjugated to the lumen with good spatial efficiency. This allows for peptide patterning in only the areas of the hydrogel where they are needed when used as cell-guides, reducing the amount of required peptide 20-fold when compared to bulk functionalization. The power of this approach is highlighted by successfully using these patterned hydrogels without active perfusion to guide fibroblasts and olfactory ensheathing cells—the latter having unique potential in neural repair therapies.}, language = {en} } @article{JanzenBakirciWielandetal.2020, author = {Janzen, Dieter and Bakirci, Ezgi and Wieland, Annalena and Martin, Corinna and Dalton, Paul D. and Villmann, Carmen}, title = {Cortical Neurons form a Functional Neuronal Network in a 3D Printed Reinforced Matrix}, series = {Advanced Healthcare Materials}, volume = {9}, journal = {Advanced Healthcare Materials}, number = {9}, doi = {10.1002/adhm.201901630}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215400}, year = {2020}, abstract = {Impairments in neuronal circuits underly multiple neurodevelopmental and neurodegenerative disorders. 3D cell culture models enhance the complexity of in vitro systems and provide a microenvironment closer to the native situation than with 2D cultures. Such novel model systems will allow the assessment of neuronal network formation and their dysfunction under disease conditions. Here, mouse cortical neurons are cultured from embryonic day E17 within in a fiber-reinforced matrix. A soft Matrigel with a shear modulus of 31 ± 5.6 Pa is reinforced with scaffolds created by melt electrowriting, improving its mechanical properties and facilitating the handling. Cortical neurons display enhance cell viability and the neuronal network maturation in 3D, estimated by staining of dendrites and synapses over 21 days in vitro, is faster in 3D compared to 2D cultures. Using functional readouts with electrophysiological recordings, different firing patterns of action potentials are observed, which are absent in the presence of the sodium channel blocker, tetrodotoxin. Voltage-gated sodium currents display a current-voltage relationship with a maximum peak current at -25 mV. With its high customizability in terms of scaffold reinforcement and soft matrix formulation, this approach represents a new tool to study neuronal networks in 3D under normal and, potentially, disease conditions.}, language = {en} } @article{WielandStrisselSchorleetal.2021, author = {Wieland, Annalena and Strissel, Pamela L. and Schorle, Hannah and Bakirci, Ezgi and Janzen, Dieter and Beckmann, Matthias W. and Eckstein, Markus and Dalton, Paul D. and Strick, Reiner}, title = {Brain and breast cancer cells with PTEN loss of function reveal enhanced durotaxis and RHOB dependent amoeboid migration utilizing 3D scaffolds and aligned microfiber tracts}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {20}, issn = {2072-6694}, doi = {10.3390/cancers13205144}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248443}, year = {2021}, abstract = {Background: Glioblastoma multiforme (GBM) and metastatic triple-negative breast cancer (TNBC) with PTEN mutations often lead to brain dissemination with poor patient outcome, thus new therapeutic targets are needed. To understand signaling, controlling the dynamics and mechanics of brain tumor cell migration, we implemented GBM and TNBC cell lines and designed 3D aligned microfibers and scaffolds mimicking brain structures. Methods: 3D microfibers and scaffolds were printed using melt electrowriting. GBM and TNBC cell lines with opposing PTEN genotypes were analyzed with RHO-ROCK-PTEN inhibitors and PTEN rescue using live-cell imaging. RNA-sequencing and qPCR of tumor cells in 3D with microfibers were performed, while scanning electron microscopy and confocal microscopy addressed cell morphology. Results: In contrast to the PTEN wildtype, GBM and TNBC cells with PTEN loss of function yielded enhanced durotaxis, topotaxis, adhesion, amoeboid migration on 3D microfibers and significant high RHOB expression. Functional studies concerning RHOB-ROCK-PTEN signaling confirmed the essential role for the above cellular processes. Conclusions: This study demonstrates a significant role of the PTEN genotype and RHOB expression for durotaxis, adhesion and migration dependent on 3D. GBM and TNBC cells with PTEN loss of function have an affinity for stiff brain structures promoting metastasis. 3D microfibers represent an important tool to model brain metastasizing tumor cells, where RHO-inhibitors could play an essential role for improved therapy.}, language = {en} }