@article{HerbertFickHeydarianetal.2022, author = {Herbert, Saskia-Laureen and Fick, Andrea and Heydarian, Motaharehsadat and Metzger, Marco and W{\"o}ckel, Achim and Rudel, Thomas and Kozjak-Pavlovic, Vera and Wulff, Christine}, title = {Establishment of the SIS scaffold-based 3D model of human peritoneum for studying the dissemination of ovarian cancer}, series = {Journal of Tissue Engineering}, volume = {13}, journal = {Journal of Tissue Engineering}, issn = {2041-7314}, doi = {10.1177/20417314221088514}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301311}, pages = {1}, year = {2022}, abstract = {Ovarian cancer is the second most common gynecological malignancy in women. More than 70\% of the cases are diagnosed at the advanced stage, presenting as primary peritoneal metastasis, which results in a poor 5-year survival rate of around 40\%. Mechanisms of peritoneal metastasis, including adhesion, migration, and invasion, are still not completely understood and therapeutic options are extremely limited. Therefore, there is a strong requirement for a 3D model mimicking the in vivo situation. In this study, we describe the establishment of a 3D tissue model of the human peritoneum based on decellularized porcine small intestinal submucosa (SIS) scaffold. The SIS scaffold was populated with human dermal fibroblasts, with LP-9 cells on the apical side representing the peritoneal mesothelium, while HUVEC cells on the basal side of the scaffold served to mimic the endothelial cell layer. Functional analyses of the transepithelial electrical resistance (TEER) and the FITC-dextran assay indicated the high barrier integrity of our model. The histological, immunohistochemical, and ultrastructural analyses showed the main characteristics of the site of adhesion. Initial experiments using the SKOV-3 cell line as representative for ovarian carcinoma demonstrated the usefulness of our models for studying tumor cell adhesion, as well as the effect of tumor cells on endothelial cell-to-cell contacts. Taken together, our data show that the novel peritoneal 3D tissue model is a promising tool for studying the peritoneal dissemination of ovarian cancer.}, language = {en} } @article{HeydarianRuehlRawaletal.2022, author = {Heydarian, Motaharehsadat and R{\"u}hl, Eva and Rawal, Ravisha and Kozjak-Pavlovic, Vera}, title = {Tissue models for Neisseria gonorrhoeae research — from 2D to 3D}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {12}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2022.840122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-263046}, year = {2022}, abstract = {Neisseria gonorrhoeae is a human-specific pathogen that causes gonorrhea, the second most common sexually transmitted infection worldwide. Disease progression, drug discovery, and basic host-pathogen interactions are studied using different approaches, which rely on models ranging from 2D cell culture to complex 3D tissues and animals. In this review, we discuss the models used in N. gonorrhoeae research. We address both in vivo (animal) and in vitro cell culture models, discussing the pros and cons of each and outlining the recent advancements in the field of three-dimensional tissue models. From simple 2D monoculture to complex advanced 3D tissue models, we provide an overview of the relevant methodology and its application. Finally, we discuss future directions in the exciting field of 3D tissue models and how they can be applied for studying the interaction of N. gonorrhoeae with host cells under conditions closely resembling those found at the native sites of infection.}, language = {en} } @article{HeydarianSchweinlinSchwarzetal.2021, author = {Heydarian, Motaharehsadat and Schweinlin, Matthias and Schwarz, Thomas and Rawal, Ravisha and Walles, Heike and Metzger, Marco and Rudel, Thomas and Kozjak-Pavlovic, Vera}, title = {Triple co-culture and perfusion bioreactor for studying the interaction between Neisseria gonorrhoeae and neutrophils: A novel 3D tissue model for bacterial infection and immunity}, series = {Journal of Tissue Engineering}, volume = {12}, journal = {Journal of Tissue Engineering}, doi = {10.1177/2041731420988802}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259032}, pages = {2041731420988802}, year = {2021}, abstract = {Gonorrhea, a sexually transmitted disease caused by the bacteria Neisseria gonorrhoeae, is characterized by a large number of neutrophils recruited to the site of infection. Therefore, proper modeling of the N. gonorrhoeae interaction with neutrophils is very important for investigating and understanding the mechanisms that gonococci use to evade the immune response. We have used a combination of a unique human 3D tissue model together with a dynamic culture system to study neutrophil transmigration to the site of N. gonorrhoeae infection. The triple co-culture model consisted of epithelial cells (T84 human colorectal carcinoma cells), human primary dermal fibroblasts, and human umbilical vein endothelial cells on a biological scaffold (SIS). After the infection of the tissue model with N. gonorrhoeae, we introduced primary human neutrophils to the endothelial side of the model using a perfusion-based bioreactor system. By this approach, we were able to demonstrate the activation and transmigration of neutrophils across the 3D tissue model and their recruitment to the site of infection. In summary, the triple co-culture model supplemented by neutrophils represents a promising tool for investigating N. gonorrhoeae and other bacterial infections and interactions with the innate immunity cells under conditions closely resembling the native tissue environment.}, language = {en} } @article{KunzRuehlingMoldovanetal.2021, author = {Kunz, Tobias C. and R{\"u}hling, Marcel and Moldovan, Adriana and Paprotka, Kerstin and Kozjak-Pavlovic, Vera and Rudel, Thomas and Fraunholz, Martin}, title = {The Expandables: Cracking the Staphylococcal Cell Wall for Expansion Microscopy}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {11}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2021.644750}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232292}, year = {2021}, abstract = {Expansion Microscopy (ExM) is a novel tool improving the resolution of fluorescence microscopy by linking the sample into a hydrogel that gets physically expanded in water. Previously, we have used ExM to visualize the intracellular Gram-negative pathogens Chlamydia trachomatis, Simkania negevensis, and Neisseria gonorrhoeae. Gram-positive bacteria have a rigid and thick cell wall that impedes classic expansion strategies. Here we developed an approach, which included a series of enzymatic treatments resulting in isotropic 4× expansion of the Gram-positive pathogen Staphylococcus aureus. We further demonstrate the suitability of the technique for imaging of planktonic bacteria as well as endocytosed, intracellular bacteria at a spatial resolution of approximately 60 nm with conventional confocal laser scanning microscopy.}, language = {en} } @article{YangHeydarianKozjakPavlovicetal.2020, author = {Yang, Tao and Heydarian, Motaharehsadat and Kozjak-Pavlovic, Vera and Urban, Manuela and Harbottle, Richard P. and Rudel, Thomas}, title = {Folliculin Controls the Intracellular Survival and Trans-Epithelial Passage of Neisseria gonorrhoeae}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {10}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {422}, issn = {2235-2988}, doi = {10.3389/fcimb.2020.00422}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211372}, year = {2020}, abstract = {Neisseria gonorrhoeae, a Gram-negative obligate human pathogenic bacterium, infects human epithelial cells and causes sexually transmitted diseases. Emerging multi-antibiotic resistant gonococci and increasing numbers of infections complicate the treatment of infected patients. Here, we used an shRNA library screen and next-generation sequencing to identify factors involved in epithelial cell infection. Folliculin (FLCN), a 64 kDa protein with a tumor repressor function was identified as a novel host factor important for N. gonorrhoeae survival after uptake. We further determined that FLCN did not affect N. gonorrhoeae adherence and invasion but was essential for its survival in the cells by modulating autophagy. In addition, FLCN was also required to maintain cell to cell contacts in the epithelial layer. In an infection model with polarized cells, FLCN inhibited the polarized localization of E-cadherin and the transcytosis of gonococci across polarized epithelial cells. In conclusion, we demonstrate here the connection between FLCN and bacterial infection and in particular the role of FLCN in the intracellular survival and transcytosis of gonococci across polarized epithelial cell layers.}, language = {en} } @article{GoetzKunzFinketal.2020, author = {G{\"o}tz, Ralph and Kunz, Tobias C. and Fink, Julian and Solger, Franziska and Schlegel, Jan and Seibel, J{\"u}rgen and Kozjak-Pavlovic, Vera and Rudel, Thomas and Sauer, Markus}, title = {Nanoscale imaging of bacterial infections by sphingolipid expansion microscopy}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-19897-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231248}, year = {2020}, abstract = {Expansion microscopy (ExM) enables super-resolution imaging of proteins and nucleic acids on conventional microscopes. However, imaging of details of the organization of lipid bilayers by light microscopy remains challenging. We introduce an unnatural short-chain azide- and amino-modified sphingolipid ceramide, which upon incorporation into membranes can be labeled by click chemistry and linked into hydrogels, followed by 4x to 10x expansion. Confocal and structured illumination microscopy (SIM) enable imaging of sphingolipids and their interactions with proteins in the plasma membrane and membrane of intracellular organelles with a spatial resolution of 10-20nm. As our functionalized sphingolipids accumulate efficiently in pathogens, we use sphingolipid ExM to investigate bacterial infections of human HeLa229 cells by Neisseria gonorrhoeae, Chlamydia trachomatis and Simkania negevensis with a resolution so far only provided by electron microscopy. In particular, sphingolipid ExM allows us to visualize the inner and outer membrane of intracellular bacteria and determine their distance to 27.6 +/- 7.7nm. Imaging of lipid bilayers using light microscopy is challenging. Here the authors label cells using a short chain click-compatible ceramide to visualize mammalian and bacterial membranes with expansion microscopy.}, language = {en} } @article{KochHoernerMuenchetal.2020, author = {Koch, Rebecca-Diana and H{\"o}rner, Eva-Maria and M{\"u}nch, Nadine and Maier, Elke and Kozjak-Pavlovic, Vera}, title = {Modulation of Host Cell Death and Lysis Are Required for the Release of Simkania negevensis}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {10}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2020.594932}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215158}, year = {2020}, abstract = {Simkania negevensis is a Chlamydia-like bacterium and emerging pathogen of the respiratory tract. It is an obligate intracellular bacterium with a biphasic developmental cycle, which replicates in a wide range of host cells. The life cycle of S. negevensis has been shown to proceed for more than 12 days, but little is known about the mechanisms that mediate the cellular release of these bacteria. This study focuses on the investigation of host cell exit by S. negevensis and its connection to host cell death modulation. We show that Simkania-infected epithelial HeLa as well as macrophage-like THP-1 cells reduce in number during the course of infection. At the same time, the infectivity of the cell culture supernatant increases, starting at the day 3 for HeLa and day 4 for THP-1 cells and reaching maximum at day 5 post infection. This correlates with the ability of S. negevensis to block TNFα-, but not staurosporin-induced cell death up to 3 days post infection, after which cell death is boosted by the presence of bacteria. Mitochondrial permeabilization through Bax and Bak is not essential for host cell lysis and release of S. negevensis. The inhibition of caspases by Z-VAD-FMK, caspase 1 by Ac-YVAD-CMK, and proteases significantly reduces the number of released infectious particles. In addition, the inhibition of myosin II by blebbistatin also strongly affects Simkania release, pointing to a possible double mechanism of exit through host cell lysis and potentially extrusion.}, language = {en} } @article{KunzGoetzGaoetal.2020, author = {Kunz, Tobias C. and G{\"o}tz, Ralph and Gao, Shiqiang and Sauer, Markus and Kozjak-Pavlovic, Vera}, title = {Using Expansion Microscopy to Visualize and Characterize the Morphology of Mitochondrial Cristae}, series = {Frontiers in Cell and Developmental Biology}, volume = {8}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2020.00617}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208296}, year = {2020}, abstract = {Mitochondria are double membrane bound organelles indispensable for biological processes such as apoptosis, cell signaling, and the production of many important metabolites, which includes ATP that is generated during the process known as oxidative phosphorylation (OXPHOS). The inner membrane contains folds called cristae, which increase the membrane surface and thus the amount of membrane-bound proteins necessary for the OXPHOS. These folds have been of great interest not only because of their importance for energy conversion, but also because changes in morphology have been linked to a broad range of diseases from cancer, diabetes, neurodegenerative diseases, to aging and infection. With a distance between opposing cristae membranes often below 100 nm, conventional fluorescence imaging cannot provide a resolution sufficient for resolving these structures. For this reason, various highly specialized super-resolution methods including dSTORM, PALM, STED, and SIM have been applied for cristae visualization. Expansion Microscopy (ExM) offers the possibility to perform super-resolution microscopy on conventional confocal microscopes by embedding the sample into a swellable hydrogel that is isotropically expanded by a factor of 4-4.5, improving the resolution to 60-70 nm on conventional confocal microscopes, which can be further increased to ∼ 30 nm laterally using SIM. Here, we demonstrate that the expression of the mitochondrial creatine kinase MtCK linked to marker protein GFP (MtCK-GFP), which localizes to the space between the outer and the inner mitochondrial membrane, can be used as a cristae marker. Applying ExM on mitochondria labeled with this construct enables visualization of morphological changes of cristae and localization studies of mitochondrial proteins relative to cristae without the need for specialized setups. For the first time we present the combination of specific mitochondrial intermembrane space labeling and ExM as a tool for studying internal structure of mitochondria.}, language = {en} } @article{WagnerKunzChowdhuryetal.2019, author = {Wagner, Fabienne and Kunz, Tobias C. and Chowdhury, Suvagata R. and Thiede, Bernd and Fraunholz, Martin and Eger, Debora and Kozjak-Pavlovic, Vera}, title = {Armadillo repeat-containing protein 1 is a dual localization protein associated with mitochondrial intermembrane space bridging complex}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0218303}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202670}, pages = {e0218303}, year = {2019}, abstract = {Cristae architecture is important for the function of mitochondria, the organelles that play the central role in many cellular processes. The mitochondrial contact site and cristae organizing system (MICOS) together with the sorting and assembly machinery (SAM) forms the mitochondrial intermembrane space bridging complex (MIB), a large protein complex present in mammalian mitochondria that partakes in the formation and maintenance of cristae. We report here a new subunit of the mammalian MICOS/MIB complex, an armadillo repeat-containing protein 1 (ArmC1). ArmC1 localizes both to cytosol and mitochondria, where it associates with the outer mitochondrial membrane through its carboxy-terminus. ArmC1 interacts with other constituents of the MICOS/MIB complex and its amounts are reduced upon MICOS/MIB complex depletion. Mitochondria lacking ArmC1 do not show defects in cristae structure, respiration or protein content, but appear fragmented and with reduced motility. ArmC1 represents therefore a peripheral MICOS/MIB component that appears to play a role in mitochondrial distribution in the cell.}, language = {en} } @article{KunzKozjakPavlovic2019, author = {Kunz, Tobias C. and Kozjak-Pavlovic, Vera}, title = {Diverse facets of sphingolipid involvement in bacterial infections}, series = {Frontiers in Cell and Developmental Biology}, volume = {7}, journal = {Frontiers in Cell and Developmental Biology}, number = {203}, doi = {10.3389/fcell.2019.00203}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201757}, year = {2019}, abstract = {Sphingolipids are constituents of the cell membrane that perform various tasks as structural elements and signaling molecules, in addition to regulating many important cellular processes, such as apoptosis and autophagy. In recent years, it has become increasingly clear that sphingolipids and sphingolipid signaling play a vital role in infection processes. In many cases the attachment and uptake of pathogenic bacteria, as well as bacterial development and survival within the host cell depend on sphingolipids. In addition, sphingolipids can serve as antimicrobials, inhibiting bacterial growth and formation of biofilms. This review will give an overview of our current information about these various aspects of sphingolipid involvement in bacterial infections.}, language = {en} }