@article{HelmerRodemersHottenrottetal.2023, author = {Helmer, Philipp and Rodemers, Philipp and Hottenrott, Sebastian and Leppich, Robert and Helwich, Maja and Pryss, R{\"u}diger and Kranke, Peter and Meybohm, Patrick and Winkler, Bernd E. and Sammeth, Michael}, title = {Evaluating blood oxygen saturation measurements by popular fitness trackers in postoperative patients: a prospective clinical trial}, series = {iScience}, volume = {26}, journal = {iScience}, number = {11}, issn = {2589-0042}, doi = {10.1016/j.isci.2023.108155}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349913}, year = {2023}, abstract = {Summary Blood oxygen saturation is an important clinical parameter, especially in postoperative hospitalized patients, monitored in clinical practice by arterial blood gas (ABG) and/or pulse oximetry that both are not suitable for a long-term continuous monitoring of patients during the entire hospital stay, or beyond. Technological advances developed recently for consumer-grade fitness trackers could—at least in theory—help to fill in this gap, but benchmarks on the applicability and accuracy of these technologies in hospitalized patients are currently lacking. We therefore conducted at the postanaesthesia care unit under controlled settings a prospective clinical trial with 201 patients, comparing in total >1,000 oxygen blood saturation measurements by fitness trackers of three brands with the ABG gold standard and with pulse oximetry. Our results suggest that, despite of an overall still tolerable measuring accuracy, comparatively high dropout rates severely limit the possibilities of employing fitness trackers, particularly during the immediate postoperative period of hospitalized patients. Highlights •The accuracy of O2 measurements by fitness trackers is tolerable (RMSE ≲4\%) •Correlation with arterial blood gas measurements is fair to moderate (PCC = [0.46; 0.64]) •Dropout rates of fitness trackers during O2 monitoring are high (∼1/3 values missing) •Fitness trackers cannot be recommended for O2 measuring during critical monitoring}, language = {en} } @article{GablonskiPryssProbstetal.2019, author = {Gablonski, Thorsten-Christian and Pryss, R{\"u}diger and Probst, Thomas and Vogel, Carsten and Andreas, Sylke}, title = {Intersession-Online: A smartphone application for systematic recording and controlling of intersession experiences in psychotherapy}, series = {J — Multidisciplinary Scientific Journal}, volume = {2}, journal = {J — Multidisciplinary Scientific Journal}, number = {4}, issn = {2571-8800}, doi = {10.3390/j2040031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285597}, pages = {480 -- 495}, year = {2019}, abstract = {Mobile health technologies have become more and more important in psychotherapy research and practice. The market is being flooded by several psychotherapeutic online services for different purposes. However, mobile health technologies are particularly suitable for data collection and monitoring, as data can be recorded economically in real time. Currently, there is no appropriate method to assess intersession experiences systematically in psychotherapeutic practice. The aim of our project was the development of a smartphone application framework for systematic recording and controlling of intersession experiences. Intersession-Online, an iOS- and Android-App, offers the possibility to collect data on intersession experiences easily, to provide the results to therapists in an evaluated form and, if necessary, to induce or interrupt intersession experiences with the primary aim to improve outcome of psychotherapy. In general, the smartphone application could be a helpful, evidence-based tool for research and practice. Overall speaking, further research to investigate the efficacy of Intersession-Online is necessary.}, language = {en} } @article{HolfelderMulanskySchleeetal.2021, author = {Holfelder, Marc and Mulansky, Lena and Schlee, Winfried and Baumeister, Harald and Schobel, Johannes and Greger, Helmut and Hoff, Andreas and Pryss, R{\"u}diger}, title = {Medical device regulation efforts for mHealth apps during the COVID-19 pandemic — an experience report of Corona Check and Corona Health}, series = {J — Multidisciplinary Scientific Journal}, volume = {4}, journal = {J — Multidisciplinary Scientific Journal}, number = {2}, issn = {2571-8800}, doi = {10.3390/j4020017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285434}, pages = {206 -- 222}, year = {2021}, abstract = {Within the healthcare environment, mobile health (mHealth) applications (apps) are becoming more and more important. The number of new mHealth apps has risen steadily in the last years. Especially the COVID-19 pandemic has led to an enormous amount of app releases. In most countries, mHealth applications have to be compliant with several regulatory aspects to be declared a "medical app". However, the latest applicable medical device regulation (MDR) does not provide more details on the requirements for mHealth applications. When developing a medical app, it is essential that all contributors in an interdisciplinary team — especially software engineers — are aware of the specific regulatory requirements beforehand. The development process, however, should not be stalled due to integration of the MDR. Therefore, a developing framework that includes these aspects is required to facilitate a reliable and quick development process. The paper at hand introduces the creation of such a framework on the basis of the Corona Health and Corona Check apps. The relevant regulatory guidelines are listed and summarized as a guidance for medical app developments during the pandemic and beyond. In particular, the important stages and challenges faced that emerged during the entire development process are highlighted.}, language = {en} } @article{SchleeNeffSimoesetal.2022, author = {Schlee, Winfried and Neff, Patrick and Simoes, Jorge and Langguth, Berthold and Schoisswohl, Stefan and Steinberger, Heidi and Norman, Marie and Spiliopoulou, Myra and Schobel, Johannes and Hannemann, Ronny and Pryss, R{\"u}diger}, title = {Smartphone-guided educational counseling and self-help for chronic tinnitus}, series = {Journal of Clinical Medicine}, volume = {11}, journal = {Journal of Clinical Medicine}, number = {7}, issn = {2077-0383}, doi = {10.3390/jcm11071825}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267295}, year = {2022}, abstract = {Tinnitus is an auditory phantom perception in the ears or head in the absence of a corresponding external stimulus. There is currently no effective treatment available that reliably reduces tinnitus. Educational counseling is a treatment approach that aims to educate patients and inform them about possible coping strategies. For this feasibility study, we implemented educational material and self-help advice in a smartphone app. Participants used the educational smartphone app unsupervised during their daily routine over a period of four months. Comparing the tinnitus outcome measures before and after smartphone-guided treatment, we measured changes in tinnitus-related distress, but not in tinnitus loudness. Improvements on the Tinnitus Severity numeric rating scale reached an effect size of 0.408, while the improvements on the Tinnitus Handicap Inventory (THI) were much smaller with an effect size of 0.168. An analysis of user behavior showed that frequent and intensive use of the app is a crucial factor for treatment success: participants that used the app more often and interacted with the app intensively reported a stronger improvement in the tinnitus. Between study allocation and final assessment, 26 of 52 participants dropped out of the study. Reasons for the dropouts and lessons for future studies are discussed in this paper.}, language = {en} } @article{PrakashUnnikrishnanPryssetal.2021, author = {Prakash, Subash and Unnikrishnan, Vishnu and Pryss, R{\"u}diger and Kraft, Robin and Schobel, Johannes and Hannemann, Ronny and Langguth, Berthold and Schlee, Winfried and Spiliopoulou, Myra}, title = {Interactive system for similarity-based inspection and assessment of the well-being of mHealth users}, series = {Entropy}, volume = {23}, journal = {Entropy}, number = {12}, issn = {1099-4300}, doi = {10.3390/e23121695}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252333}, year = {2021}, abstract = {Recent digitization technologies empower mHealth users to conveniently record their Ecological Momentary Assessments (EMA) through web applications, smartphones, and wearable devices. These recordings can help clinicians understand how the users' condition changes, but appropriate learning and visualization mechanisms are required for this purpose. We propose a web-based visual analytics tool, which processes clinical data as well as EMAs that were recorded through a mHealth application. The goals we pursue are (1) to predict the condition of the user in the near and the far future, while also identifying the clinical data that mostly contribute to EMA predictions, (2) to identify users with outlier EMA, and (3) to show to what extent the EMAs of a user are in line with or diverge from those users similar to him/her. We report our findings based on a pilot study on patient empowerment, involving tinnitus patients who recorded EMAs with the mHealth app TinnitusTips. To validate our method, we also derived synthetic data from the same pilot study. Based on this setting, results for different use cases are reported.}, language = {en} } @article{SommerAmrBavendieketal.2022, author = {Sommer, Kim K. and Amr, Ali and Bavendiek, Udo and Beierle, Felix and Brunecker, Peter and Dathe, Henning and Eils, J{\"u}rgen and Ertl, Maximilian and Fette, Georg and Gietzelt, Matthias and Heidecker, Bettina and Hellenkamp, Kristian and Heuschmann, Peter and Hoos, Jennifer D. E. and Keszty{\"u}s, Tibor and Kerwagen, Fabian and Kindermann, Aljoscha and Krefting, Dagmar and Landmesser, Ulf and Marschollek, Michael and Meder, Benjamin and Merzweiler, Angela and Prasser, Fabian and Pryss, R{\"u}diger and Richter, Jendrik and Schneider, Philipp and St{\"o}rk, Stefan and Dieterich, Christoph}, title = {Structured, harmonized, and interoperable integration of clinical routine data to compute heart failure risk scores}, series = {Life}, volume = {12}, journal = {Life}, number = {5}, issn = {2075-1729}, doi = {10.3390/life12050749}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275239}, year = {2022}, abstract = {Risk prediction in patients with heart failure (HF) is essential to improve the tailoring of preventive, diagnostic, and therapeutic strategies for the individual patient, and effectively use health care resources. Risk scores derived from controlled clinical studies can be used to calculate the risk of mortality and HF hospitalizations. However, these scores are poorly implemented into routine care, predominantly because their calculation requires considerable efforts in practice and necessary data often are not available in an interoperable format. In this work, we demonstrate the feasibility of a multi-site solution to derive and calculate two exemplary HF scores from clinical routine data (MAGGIC score with six continuous and eight categorical variables; Barcelona Bio-HF score with five continuous and six categorical variables). Within HiGHmed, a German Medical Informatics Initiative consortium, we implemented an interoperable solution, collecting a harmonized HF-phenotypic core data set (CDS) within the openEHR framework. Our approach minimizes the need for manual data entry by automatically retrieving data from primary systems. We show, across five participating medical centers, that the implemented structures to execute dedicated data queries, followed by harmonized data processing and score calculation, work well in practice. In summary, we demonstrated the feasibility of clinical routine data usage across multiple partner sites to compute HF risk scores. This solution can be extended to a large spectrum of applications in clinical care.}, language = {en} } @article{HelmerHottenrottRodemersetal.2022, author = {Helmer, Philipp and Hottenrott, Sebastian and Rodemers, Philipp and Leppich, Robert and Helwich, Maja and Pryss, R{\"u}diger and Kranke, Peter and Meybohm, Patrick and Winkler, Bernd E. and Sammeth, Michael}, title = {Accuracy and Systematic Biases of Heart Rate Measurements by Consumer-Grade Fitness Trackers in Postoperative Patients: Prospective Clinical Trial}, series = {Journal of Medical Internet Research}, volume = {24}, journal = {Journal of Medical Internet Research}, number = {12}, doi = {10.2196/42359}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299679}, year = {2022}, abstract = {Background: Over the recent years, technological advances of wrist-worn fitness trackers heralded a new era in the continuous monitoring of vital signs. So far, these devices have primarily been used for sports. Objective: However, for using these technologies in health care, further validations of the measurement accuracy in hospitalized patients are essential but lacking to date. Methods: We conducted a prospective validation study with 201 patients after moderate to major surgery in a controlled setting to benchmark the accuracy of heart rate measurements in 4 consumer-grade fitness trackers (Apple Watch 7, Garmin Fenix 6 Pro, Withings ScanWatch, and Fitbit Sense) against the clinical gold standard (electrocardiography). Results: All devices exhibited high correlation (r≥0.95; P<.001) and concordance (rc≥0.94) coefficients, with a relative error as low as mean absolute percentage error <5\% based on 1630 valid measurements. We identified confounders significantly biasing the measurement accuracy, although not at clinically relevant levels (mean absolute error<5 beats per minute). Conclusions: Consumer-grade fitness trackers appear promising in hospitalized patients for monitoring heart rate.}, language = {en} } @article{AllgaierSchleeProbstetal.2022, author = {Allgaier, Johannes and Schlee, Winfried and Probst, Thomas and Pryss, R{\"u}diger}, title = {Prediction of tinnitus perception based on daily life mHealth data using country origin and season}, series = {Journal of Clinical Medicine}, volume = {11}, journal = {Journal of Clinical Medicine}, number = {15}, issn = {2077-0383}, doi = {10.3390/jcm11154270}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281812}, year = {2022}, abstract = {Tinnitus is an auditory phantom perception without external sound stimuli. This chronic perception can severely affect quality of life. Because tinnitus symptoms are highly heterogeneous, multimodal data analyses are increasingly used to gain new insights. MHealth data sources, with their particular focus on country- and season-specific differences, can provide a promising avenue for new insights. Therefore, we examined data from the TrackYourTinnitus (TYT) mHealth platform to create symptom profiles of TYT users. We used gradient boosting engines to classify momentary tinnitus and regress tinnitus loudness, using country of origin and season as features. At the daily assessment level, tinnitus loudness can be regressed with a mean absolute error rate of 7.9\% points. In turn, momentary tinnitus can be classified with an F1 score of 93.79\%. Both results indicate differences in the tinnitus of TYT users with respect to season and country of origin. The significance of the features was evaluated using statistical and explainable machine learning methods. It was further shown that tinnitus varies with temperature in certain countries. The results presented show that season and country of origin appear to be valuable features when combined with longitudinal mHealth data at the level of daily assessment.}, language = {en} } @article{KammererGoesterReichertetal.2021, author = {Kammerer, Klaus and G{\"o}ster, Manuel and Reichert, Manfred and Pryss, R{\"u}diger}, title = {Ambalytics: a scalable and distributed system architecture concept for bibliometric network analyses}, series = {Future Internet}, volume = {13}, journal = {Future Internet}, number = {8}, issn = {1999-5903}, doi = {10.3390/fi13080203}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244916}, year = {2021}, abstract = {A deep understanding about a field of research is valuable for academic researchers. In addition to technical knowledge, this includes knowledge about subareas, open research questions, and social communities (networks) of individuals and organizations within a given field. With bibliometric analyses, researchers can acquire quantitatively valuable knowledge about a research area by using bibliographic information on academic publications provided by bibliographic data providers. Bibliometric analyses include the calculation of bibliometric networks to describe affiliations or similarities of bibliometric entities (e.g., authors) and group them into clusters representing subareas or communities. Calculating and visualizing bibliometric networks is a nontrivial and time-consuming data science task that requires highly skilled individuals. In addition to domain knowledge, researchers must often provide statistical knowledge and programming skills or use software tools having limited functionality and usability. In this paper, we present the ambalytics bibliometric platform, which reduces the complexity of bibliometric network analysis and the visualization of results. It accompanies users through the process of bibliometric analysis and eliminates the need for individuals to have programming skills and statistical knowledge, while preserving advanced functionality, such as algorithm parameterization, for experts. As a proof-of-concept, and as an example of bibliometric analyses outcomes, the calculation of research fronts networks based on a hybrid similarity approach is shown. Being designed to scale, ambalytics makes use of distributed systems concepts and technologies. It is based on the microservice architecture concept and uses the Kubernetes framework for orchestration. This paper presents the initial building block of a comprehensive bibliometric analysis platform called ambalytics, which aims at a high usability for users as well as scalability.}, language = {en} } @article{KraftReichertPryss2021, author = {Kraft, Robin and Reichert, Manfred and Pryss, R{\"u}diger}, title = {Towards the interpretation of sound measurements from smartphones collected with mobile crowdsensing in the healthcare domain: an experiment with Android devices}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {1}, issn = {1424-8220}, doi = {10.3390/s22010170}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252246}, year = {2021}, abstract = {The ubiquity of mobile devices fosters the combined use of ecological momentary assessments (EMA) and mobile crowdsensing (MCS) in the field of healthcare. This combination not only allows researchers to collect ecologically valid data, but also to use smartphone sensors to capture the context in which these data are collected. The TrackYourTinnitus (TYT) platform uses EMA to track users' individual subjective tinnitus perception and MCS to capture an objective environmental sound level while the EMA questionnaire is filled in. However, the sound level data cannot be used directly among the different smartphones used by TYT users, since uncalibrated raw values are stored. This work describes an approach towards making these values comparable. In the described setting, the evaluation of sensor measurements from different smartphone users becomes increasingly prevalent. Therefore, the shown approach can be also considered as a more general solution as it not only shows how it helped to interpret TYT sound level data, but may also stimulate other researchers, especially those who need to interpret sensor data in a similar setting. Altogether, the approach will show that measuring sound levels with mobile devices is possible in healthcare scenarios, but there are many challenges to ensuring that the measured values are interpretable.}, language = {en} }