@article{FergerBanKrošletal.2021, author = {Ferger, Matthias and Ban, Željka and Krošl, Ivona and Tomić, Sanja and Dietrich, Lena and Lorenzen, Sabine and Rauch, Florian and Sieh, Daniel and Friedrich, Alexandra and Griesbeck, Stefanie and Kenđel, Adriana and Miljanić, Snežana and Piantanida, Ivo and Marder, Todd B.}, title = {Bis(phenylethynyl)arene Linkers in Tetracationic Bis-triarylborane Chromophores Control Fluorimetric and Raman Sensing of Various DNAs and RNAs}, series = {Chemistry-A European Journal}, volume = {27}, journal = {Chemistry-A European Journal}, number = {16}, doi = {10.1002/chem.202005141}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256717}, pages = {5142-5159}, year = {2021}, abstract = {We report four new luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nanomolar range. Three of the compounds contain substituted, highly emissive and structurally flexible bis(2,6-dimethylphenyl-4-ethynyl)arene linkers (3: arene=5,5′-2,2′-bithiophene; 4: arene=1,4-benzene; 5: arene=9,10-anthracene) between the two boryl moieties and serve as efficient dual Raman and fluorescence chromophores. The shorter analogue 6 employs 9,10-anthracene as the linker and demonstrates the importance of an adequate linker length with a certain level of flexibility by exhibiting generally lower binding affinities than 3-5. Pronounced aggregation-deaggregation processes are observed in fluorimetric titration experiments with DNA for compounds 3 and 5. Molecular modelling of complexes of 5 with AT-DNA, suggest the minor groove as the dominant binding site for monomeric 5, but demonstrate that dimers of 5 can also be accommodated. Strong SERS responses for 3-5 versus a very weak response for 6, particularly the strong signals from anthracene itself observed for 5 but not for 6, demonstrate the importance of triple bonds for strong Raman activity in molecules of this compound class. The energy of the characteristic stretching vibration of the C≡C bonds is significantly dependent on the aromatic moiety between the triple bonds. The insertion of aromatic moieties between two C≡C bonds thus offers an alternative design for dual Raman and fluorescence chromophores, applicable in multiplex biological Raman imaging.}, language = {en} } @article{MerzDietrichNitschetal.2020, author = {Merz, Julia and Dietrich, Lena and Nitsch, J{\"o}rn and Krummenacher, Ivo and Braunschweig, Holger and Moos, Michael and Mims, David and Lambert, Christoph and Marder, Todd B.}, title = {Synthesis, Photophysical and Electronic Properties of Mono-, Di-, and Tri-Amino-Substituted Ortho-Perylenes, and Comparison to the Tetra-Substituted Derivative}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {52}, doi = {10.1002/chem.202001475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217835}, pages = {12050 -- 12059}, year = {2020}, abstract = {We synthesized a series of new mono-, di-, tri- and tetra-substituted perylene derivatives with strong bis(para-methoxyphenyl)amine (DPA) donors at the uncommon 2,5,8,11-positions. The properties of our new donor-substituted perylenes were studied in detail to establish a structure-property relationship. Interesting trends and unusual properties are observed for this series of new perylene derivatives, such as a decreasing charge transfer (CT) character with increasing number of DPA moieties and individual reversible oxidations for each DPA moiety. Thus, (DPA)-Per possesses one reversible oxidation while (DPA)\(_{4}\)-Per has four. The mono- and di-substituted derivatives display unusually large Stokes shifts not previously reported for perylenes. Furthermore, transient absorption measurements of the new derivatives reveal an excited state with lifetimes of several hundred microseconds, which sensitizes singlet oxygen with quantum yields of up to 0.83.}, language = {en} }