@article{WaelbroeckTastenoyCamusetal.1989, author = {Waelbroeck, M. and Tastenoy, M. and Camus, J. and Christophe, J. and Strohmann, C. and Linoh, H. and Zilch, H. and Tacke, Reinhold and Mutschler, E. and Lambrecht, G.}, title = {Binding and functional properties of antimuscarinics of the hexocyclium/sila-hexocyclium and hexahydro-diphenidol/hexahydro-sila-diphenidol type to muscarinic receptor subtypes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63944}, year = {1989}, abstract = {l In an attempt to assess the structural requirements for the musearlnie receptor selectivity of hexahydro-diphenidol (hexahydro-difenidol) and hexahydro-sila-diphenidol (hexahydro-sila-difenidol), a serles of structurally related C/Si pairs were investigated, along with atropine, pirenzepine and methoctramine, for their binding affinities in NB-OK 1 cells as well as in rat heart and pancreas. 2 The action of these antagonists at musearlnie receptors mediating negative inotropic responses in guinea-pig atrla and ileal contractions has also been assessed. 3 Antagonist binding data indicated that NB-OK 1 cells (M\(_1\) type) as weil as rat heart (cardiac type) and pancreas (glandularjsmooth muscle type) possess different muscarinic receptor subtypes. 4 A highly significant correlation was found between the binding affinities of the antagonists to muscarinic receptors in rat heart and pancreas, respectively, and the affinities to muscarinic receptors in guinea-pig atria and ileum. This implies that the musearlnie binding sites in rat heart and the receptors in guinea-pig atrla are essentially similar, but different from those in pancreas and ileum. 5 The antimuscarinic potency of hexahydro-diphenidol and hexahydro-sila-diphenidol at the three subtypes was inftuenced differently by structural modifications (e.g. quaternization). Different selectivity profiles for the antagonists were obtained, which makes these compounds useful tools to investigate further muscarinic receptor heterogeneity. lndeed, the tertiary analogues hexahydrodiphenidol (HHD) and hexahydro-sila-diphenidol (HHSiD) bad an M\(_1\) = glandularjsmooth muscle > cardiac selectivity profile, whereas the quaternary analogues HHD methiodide and HHSiD methiodide were M\(_1\) preferring (M\(_1\) > glandularjsmooth muscle, cardiac).}, subject = {Anorganische Chemie}, language = {en} } @article{SheldrickLinohTackeetal.1985, author = {Sheldrick, W. S. and Linoh, H. and Tacke, Reinhold and Lambrecht, G. and Moser, U. and Mutschler, E.}, title = {Crystal and molecular structures of the (R)-enantiomer and the racemate of the antimuscarinic agent (cyclohexyl)phenyl[2-(pyrrolidin-1-yl)ethyl]silanol (sila-procyclidine)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63776}, year = {1985}, abstract = {The crystal structures of the (R)-enantiomer (2b) and the racemate (1 b) of (cyclohexyl)phenyl[2- (pyrrolidin-1-yl)ethyl]silanol (sila--procyclidine) have been determined by X -ray structural analysis. The absolute configuration of (2b) was established. (2b) crystallizes in the orthorhombic space group P2\(_1\)2\(_1\)2\(_1\), with a = 15.221 (1 ), b = 17.967(1 ), c = 6.463(1) A, and Z = 4. (1 b) crystallizes in the monoclinic space group P2\(_1\)/c, with a = 6.441 (1 ), b = 17.1 82(7), c = 16.707(4) A, ß = 1 03.86(2r, and Z = 4. The structures were refined to respective R factors of 0.044 and 0.058. The molecular conformation of sila-procyclidine is identical in the two different structures. lntermolecular 0-H • • • N hydrogen bonding is observed in both crystallattices.ln (1 b) (R)- and (S)-configurated molecules form centrosymmetric dimers, in (2b) the (R)-configurated molecules are linked into infinite chains parallel to the c axis. The (R)-configurated sila--procyclidine (2b) has higher affinity for ileal and atrial muscarinic receptors of the guinea pig than the (S)-configurated enantiomer (3b).}, subject = {Anorganische Chemie}, language = {en} }