@article{DaryaeeChangSchiebeletal.2016, author = {Daryaee, Fereidoon and Chang, Andrew and Schiebel, Johannes and Lu, Yang and Zhang, Zhuo and Kapilashrami, Kanishk and Walker, Stephen G. and Kisker, Caroline and Sotriffer, Christoph A. and Fisher, Stewart L. and Tonge, Peter J.}, title = {Correlating drug-target kinetics and in vivo pharmacodynamics: long residence time inhibitors of the FabI enoyl-ACP reductase}, series = {Chemical Science}, volume = {7}, journal = {Chemical Science}, number = {9}, doi = {10.1039/c6sc01000h}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191218}, pages = {5945-5954}, year = {2016}, abstract = {Drug-target kinetics enable time-dependent changes in target engagement to be quantified as a function of drug concentration. When coupled to drug pharmacokinetics (PK), drug-target kinetics can thus be used to predict in vivo pharmacodynamics (PD). Previously we described a mechanistic PK/PD model that successfully predicted the antibacterial activity of an LpxC inhibitor in a model of Pseudomonas aeruginosa infection. In the present work we demonstrate that the same approach can be used to predict the in vivo activity of an enoyl-ACP reductase (FabI) inhibitor in a model of methicillin-resistant Staphylococcus aureus (MRSA) infection. This is significant because the LpxC inhibitors are cidal, whereas the FabI inhibitors are static. In addition P. aeruginosa is a Gram-negative organism whereas MRSA is Gram-positive. Thus this study supports the general applicability of our modeling approach across antibacterial space.}, language = {en} } @article{RohlederHuangXueetal.2016, author = {Rohleder, Florian and Huang, Jing and Xue, Yutong and Kuper, Jochen and Round, Adam and Seidman, Michael and Wang, Weidong and Kisker, Caroline}, title = {FANCM interacts with PCNA to promote replication traverse of DNA interstrand crosslinks}, series = {Nucleic Acids Research}, volume = {44}, journal = {Nucleic Acids Research}, number = {7}, doi = {10.1093/nar/gkw037}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175401}, pages = {3219-3232}, year = {2016}, abstract = {FANCM is a highly conserved DNA remodeling enzyme that promotes the activation of the Fanconi anemia DNA repair pathway and facilitates replication traverse of DNA interstrand crosslinks. However, how FANCM interacts with the replication machinery to promote traverse remains unclear. Here, we show that FANCM and its archaeal homolog Hef from Thermoplasma acidophilum interact with proliferating cell nuclear antigen (PCNA), an essential co-factor for DNA polymerases in both replication and repair. The interaction is mediated through a conserved PIP-box; and in human FANCM, it is strongly stimulated by replication stress. A FANCM variant carrying a mutation in the PIP-box is defective in promoting replication traverse of interstrand crosslinks and is also inefficient in promoting FANCD2 monoubiquitination, a key step of the Fanconi anemia pathway. Our data reveal a conserved interaction mode between FANCM and PCNA during replication stress, and suggest that this interaction is essential for FANCM to aid replication machines to traverse DNA interstrand crosslinks prior to post-replication repair.}, language = {en} } @article{LorenzinBenaryBaluapurietal.2016, author = {Lorenzin, Francesca and Benary, Uwe and Baluapuri, Apoorva and Walz, Susanne and Jung, Lisa Anna and von Eyss, Bj{\"o}rn and Kisker, Caroline and Wolf, Jana and Eilers, Martin and Wolf, Elmar}, title = {Different promoter affinities account for specificity in MYC-dependent gene regulation}, series = {eLife}, volume = {5}, journal = {eLife}, doi = {10.7554/eLife.15161}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162913}, pages = {e15161}, year = {2016}, abstract = {Enhanced expression of the MYC transcription factor is observed in the majority of tumors. Two seemingly conflicting models have been proposed for its function: one proposes that MYC enhances expression of all genes, while the other model suggests gene-specific regulation. Here, we have explored the hypothesis that specific gene expression profiles arise since promoters differ in affinity for MYC and high-affinity promoters are fully occupied by physiological levels of MYC. We determined cellular MYC levels and used RNA- and ChIP-sequencing to correlate promoter occupancy with gene expression at different concentrations of MYC. Mathematical modeling showed that binding affinities for interactions of MYC with DNA and with core promoter-bound factors, such as WDR5, are sufficient to explain promoter occupancies observed in vivo. Importantly, promoter affinity stratifies different biological processes that are regulated by MYC, explaining why tumor-specific MYC levels induce specific gene expression programs and alter defined biological properties of cells.}, language = {en} }