@article{BechtleBringmannDeschetal.2012, author = {Bechtle, Philip and Bringmann, Torsten and Desch, Klaus and Dreiner, Herbi and Hamer, Matthias and Hensel, Carsten and Kr{\"a}mer, Michael and Nguyen, Nelly and Porod, Werner and Prudent, Xavier and Sarrazin, Bj{\"o}rn and Uhlenbrock, Mathias and Wienemann, Peter}, title = {Constrained supersymmetry after two years of LHC data: a global view with Fittino}, series = {Journal of High Energy Physics}, volume = {06}, journal = {Journal of High Energy Physics}, number = {098}, doi = {10.1007/JHEP06(2012)098}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129573}, year = {2012}, abstract = {We perform global fits to the parameters of the Constrained Minimal Super-symmetric Standard Model (CMSSM) and to a variant with non-universal Higgs masses (NUHM1). In addition to constraints from low-energy precision observables and the cosmological dark matter density, we take into account the LHC exclusions from searches in jets plus missing transverse energy signatures with about 5 fb\(^{-1}\) of integrated luminosity. We also include the most recent upper bound on the branching ratio B\(_s\)  → μμ from LHCb. Furthermore, constraints from and implications for direct and indirect dark matter searches are discussed. The best fit of the CMSSM prefers a light Higgs boson just above the experimentally excluded mass. We find that the description of the low-energy observables, (g - 2)\(_μ\) in particular, and the non-observation of SUSY at the LHC become more and more incompatible within the CMSSM. A potential SM-like Higgs boson with mass around 126 GeV can barely be accommodated. Values for B(B\(_s\)→μμ) just around the Standard Model prediction are naturally expected in the best fit region. The most-preferred region is not yet affected by limits on direct WIMP searches, but the next generation of experiments will probe this region. Finally, we discuss implications from fine-tuning for the best fit regions.}, language = {en} }