@article{FalibeneRocesRoessleretal.2016, author = {Falibene, Augustine and Roces, Flavio and R{\"o}ssler, Wolfgang and Groh, Claudia}, title = {Daily Thermal Fluctuations Experienced by Pupae via Rhythmic Nursing Behavior Increase Numbers of Mushroom Body Microglomeruli in the Adult Ant Brain}, series = {Frontiers in Behavioral Neuroscience}, volume = {10}, journal = {Frontiers in Behavioral Neuroscience}, number = {73}, doi = {10.3389/fnbeh.2016.00073}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146711}, year = {2016}, abstract = {Social insects control brood development by using different thermoregulatory strategies. Camponotus mus ants expose their brood to daily temperature fluctuations by translocating them inside the nest following a circadian rhythm of thermal preferences. At the middle of the photophase brood is moved to locations at 30.8°C; 8 h later, during the night, the brood is transferred back to locations at 27.5°C. We investigated whether daily thermal fluctuations experienced by developing pupae affect the neuroarchitecture in the adult brain, in particular in sensory input regions of the mushroom bodies (MB calyces). The complexity of synaptic microcircuits was estimated by quantifying MB-calyx volumes together with densities of presynaptic boutons of microglomeruli (MG) in the olfactory lip and visual collar regions. We compared young adult workers that were reared either under controlled daily thermal fluctuations of different amplitudes, or at different constant temperatures. Thermal regimes significantly affected the large (non-dense) olfactory lip region of the adult MB calyx, while changes in the dense lip and the visual collar were less evident. Thermal fluctuations mimicking the amplitudes of natural temperature fluctuations via circadian rhythmic translocation of pupae by nurses (amplitude 3.3°C) lead to higher numbers of MG in the MB calyces compared to those in pupae reared at smaller or larger thermal amplitudes (0.0, 1.5, 9.6°C), or at constant temperatures (25.4, 35.0°C). We conclude that rhythmic control of brood temperature by nursing ants optimizes brain development by increasing MG densities and numbers in specific brain areas. Resulting differences in synaptic microcircuits are expected to affect sensory processing and learning abilities in adult ants, and may also promote interindividual behavioral variability within colonies.}, language = {en} } @article{KirschUllrichKunde2016, author = {Kirsch, Wladimir and Ullrich, Benjamin and Kunde, Wilfried}, title = {Are Effects of Action on Perception Real? Evidence from Transformed Movements}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {12}, doi = {10.1371/journal.pone.0167993}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178574}, year = {2016}, abstract = {It has been argued that several reported non-visual influences on perception cannot be truly perceptual. If they were, they should affect the perception of target objects and reference objects used to express perceptual judgments, and thus cancel each other out. This reasoning presumes that non-visual manipulations impact target objects and comparison objects equally. In the present study we show that equalizing a body-related manipulation between target objects and reference objects essentially abolishes the impact of that manipulation so as it should do when that manipulation actually altered perception. Moreover, the manipulation has an impact on judgements when applied to only the target object but not to the reference object, and that impact reverses when only applied to the reference object but not to the target object. A perceptual explanation predicts this reversal, whereas explanations in terms of post-perceptual response biases or demand effects do not. Altogether these results suggest that body-related influences on perception cannot as a whole be attributed to extra-perceptual factors.}, language = {en} } @article{KoenigWolfHeisenberg2016, author = {Koenig, Sebastian and Wolf, Reinhard and Heisenberg, Martin}, title = {Vision in Flies: Measuring the Attention Span}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0148208}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179947}, year = {2016}, abstract = {A visual stimulus at a particular location of the visual field may elicit a behavior while at the same time equally salient stimuli in other parts do not. This property of visual systems is known as selective visual attention (SVA). The animal is said to have a focus of attention (FoA) which it has shifted to a particular location. Visual attention normally involves an attention span at the location to which the FoA has been shifted. Here the attention span is measured in Drosophila. The fly is tethered and hence has its eyes fixed in space. It can shift its FoA internally. This shift is revealed using two simultaneous test stimuli with characteristic responses at their particular locations. In tethered flight a wild type fly keeps its FoA at a certain location for up to 4s. Flies with a mutation in the radish gene, that has been suggested to be involved in attention-like mechanisms, display a reduced attention span of only 1s.}, language = {en} } @article{KoenigWolfHeisenberg2016, author = {Koenig, Sebastian and Wolf, Reinhard and Heisenberg, Martin}, title = {Visual Attention in Flies-Dopamine in the Mushroom Bodies Mediates the After-Effect of Cueing}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0161412}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179564}, year = {2016}, abstract = {Visual environments may simultaneously comprise stimuli of different significance. Often such stimuli require incompatible responses. Selective visual attention allows an animal to respond exclusively to the stimuli at a certain location in the visual field. In the process of establishing its focus of attention the animal can be influenced by external cues. Here we characterize the behavioral properties and neural mechanism of cueing in the fly Drosophila melanogaster. A cue can be attractive, repulsive or ineffective depending upon (e.g.) its visual properties and location in the visual field. Dopamine signaling in the brain is required to maintain the effect of cueing once the cue has disappeared. Raising or lowering dopamine at the synapse abolishes this after-effect. Specifically, dopamine is necessary and sufficient in the αβ-lobes of the mushroom bodies. Evidence is provided for an involvement of the αβ\(_{posterior}\) Kenyon cells.}, language = {en} } @article{MuellerMeigen2016, author = {M{\"u}ller, Philipp L. and Meigen, Thomas}, title = {M-sequences in ophthalmic electrophysiology}, series = {Journal of Vision}, volume = {16}, journal = {Journal of Vision}, number = {1,15}, doi = {10.1167/16.1.15}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165796}, pages = {1-19}, year = {2016}, abstract = {The aim of this review is to use the multimedia aspects of a purely digital online publication to explain and illustrate the highly capable technique of m-sequences in multifocal ophthalmic electrophysiology. M-sequences have been successfully applied in clinical routines during the past 20 years. However, the underlying mathematical rationale is often daunting. These mathematical properties of m-sequences allow one not only to separate the responses from different fields but also to analyze adaptational effects and impacts of former events. By explaining the history, the formation, and the different aspects of application, a better comprehension of the technique is intended. With this review we aim to clarify the opportunities of m-sequences in order to motivate scientists to use m-sequences in their future research.}, language = {en} } @article{SenthilanHelfrichFoerster2016, author = {Senthilan, Pingkalai R. and Helfrich-F{\"o}rster, Charlotte}, title = {Rhodopsin 7-The unusual Rhodopsin in Drosophila}, series = {PeerJ}, volume = {4}, journal = {PeerJ}, doi = {10.7717/peerj.2427}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177998}, year = {2016}, abstract = {Rhodopsins are the major photopigments in the fruit fly Drosophila melanogaster. Drosophila express six well-characterized Rhodopsins (Rh1-Rh6) with distinct absorption maxima and expression pattern. In 2000, when the Drosophila genome was published, a novel Rhodopsin gene was discovered: Rhodopsin 7 (Rh7). Rh7 is highly conserved among the Drosophila genus and is also found in other arthropods. Phylogenetic trees based on protein sequences suggest that the seven Drosophila Rhodopsins cluster in three different groups. While Rh1, Rh2 and Rh6 form a "vertebrate-melanopsin-type"-cluster, and Rh3, Rh4 and Rh5 form an "insect-type"-Rhodopsin cluster, Rh7 seem to form its own cluster. Although Rh7 has nearly all important features of a functional Rhodopsin, it differs from other Rhodopsins in its genomic and structural properties, suggesting it might have an overall different role than other known Rhodopsins.}, language = {en} } @article{SommerlandtSpaetheRoessleretal.2016, author = {Sommerlandt, Frank M. J. and Spaethe, Johannes and R{\"o}ssler, Wolfgang and Dyer, Adrian G.}, title = {Does Fine Color Discrimination Learning in Free-Flying Honeybees Change Mushroom-Body Calyx Neuroarchitecture?}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {10}, doi = {10.1371/journal.pone.0164386}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147932}, pages = {e0164386}, year = {2016}, abstract = {Honeybees learn color information of rewarding flowers and recall these memories in future decisions. For fine color discrimination, bees require differential conditioning with a concurrent presentation of target and distractor stimuli to form a long-term memory. Here we investigated whether the long-term storage of color information shapes the neural network of microglomeruli in the mushroom body calyces and if this depends on the type of conditioning. Free-flying honeybees were individually trained to a pair of perceptually similar colors in either absolute conditioning towards one of the colors or in differential conditioning with both colors. Subsequently, bees of either conditioning groups were tested in non-rewarded discrimination tests with the two colors. Only bees trained with differential conditioning preferred the previously learned color, whereas bees of the absolute conditioning group, and a stimuli-na{\"i}ve group, chose randomly among color stimuli. All bees were then kept individually for three days in the dark to allow for complete long-term memory formation. Whole-mount immunostaining was subsequently used to quantify variation of microglomeruli number and density in the mushroom-body lip and collar. We found no significant differences among groups in neuropil volumes and total microglomeruli numbers, but learning performance was negatively correlated with microglomeruli density in the absolute conditioning group. Based on these findings we aim to promote future research approaches combining behaviorally relevant color learning tests in honeybees under free-flight conditions with neuroimaging analysis; we also discuss possible limitations of this approach.q}, language = {en} }