@article{AndelovicWinterKampfetal.2021, author = {Andelovic, Kristina and Winter, Patrick and Kampf, Thomas and Xu, Anton and Jakob, Peter Michael and Herold, Volker and Bauer, Wolfgang Rudolf and Zernecke, Alma}, title = {2D Projection Maps of WSS and OSI Reveal Distinct Spatiotemporal Changes in Hemodynamics in the Murine Aorta during Ageing and Atherosclerosis}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {12}, issn = {2227-9059}, doi = {10.3390/biomedicines9121856}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252164}, year = {2021}, abstract = {Growth, ageing and atherosclerotic plaque development alter the biomechanical forces acting on the vessel wall. However, monitoring the detailed local changes in wall shear stress (WSS) at distinct sites of the murine aortic arch over time has been challenging. Here, we studied the temporal and spatial changes in flow, WSS, oscillatory shear index (OSI) and elastic properties of healthy wildtype (WT, n = 5) and atherosclerotic apolipoprotein E-deficient (Apoe\(^{-/-}\), n = 6) mice during ageing and atherosclerosis using high-resolution 4D flow magnetic resonance imaging (MRI). Spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated, allowing the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and local correlations between WSS, pulse wave velocity (PWV), plaque and vessel wall characteristics. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe\(^{-/-}\) mice, and we identified the circumferential WSS as potential marker of plaque size and composition in advanced atherosclerosis and the radial strain as a potential marker for vascular elasticity. Two-dimensional (2D) projection maps of WSS and OSI, including statistical analysis provide a powerful tool to monitor local aortic hemodynamics during ageing and atherosclerosis. The correlation of spatially resolved hemodynamics and plaque characteristics could significantly improve our understanding of the impact of hemodynamics on atherosclerosis, which may be key to understand plaque progression towards vulnerability.}, language = {en} } @article{AsterEvdokimovBraunetal.2022, author = {Aster, Hans-Christoph and Evdokimov, Dimitar and Braun, Alexandra and {\"U}{\c{c}}eyler, Nurcan and Kampf, Thomas and Pham, Mirko and Homola, Gy{\"o}rgy A. and Sommer, Claudia}, title = {CNS imaging characteristics in fibromyalgia patients with and without peripheral nerve involvement}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-022-10489-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300562}, year = {2022}, abstract = {We tested the hypothesis that reduced skin innervation in fibromyalgia syndrome is associated with specific CNS changes. This prospective case-control study included 43 women diagnosed with fibromyalgia syndrome and 40 healthy controls. We further compared the fibromyalgia subgroups with reduced (n = 21) and normal (n = 22) skin innervation. Brains were analysed for cortical volume, for white matter integrity, and for functional connectivity. Compared to controls, cortical thickness was decreased in regions of the frontal, temporal and parietal cortex in the fibromyalgia group as a whole, and decreased in the bilateral pericalcarine cortices in the fibromyalgia subgroup with reduced skin innervation. Diffusion tensor imaging revealed a significant increase in fractional anisotropy in the corona radiata, the corpus callosum, cingulum and fornix in patients with fibromyalgia compared to healthy controls and decreased FA in parts of the internal capsule and thalamic radiation in the subgroup with reduced skin innervation. Using resting-state fMRI, the fibromyalgia group as a whole showed functional hypoconnectivity between the right midfrontal gyrus and the posterior cerebellum and the right crus cerebellum, respectively. The subgroup with reduced skin innervation showed hyperconnectivity between the inferior frontal gyrus, the angular gyrus and the posterior parietal gyrus. Our results suggest that the subgroup of fibromyalgia patients with pronounced pathology in the peripheral nervous system shows alterations in morphology, structural and functional connectivity also at the level of the encephalon. We propose considering these subgroups when conducting clinical trials.}, language = {en} } @article{HeroldKampfJakob2019, author = {Herold, Volker and Kampf, Thomas and Jakob, Peter Michael}, title = {Dynamic magnetic resonance scattering}, series = {Communications Physics}, volume = {2}, journal = {Communications Physics}, doi = {10.1038/s42005-019-0136-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201091}, pages = {46}, year = {2019}, abstract = {Dynamic light scattering is a popular technique to determine the size distribution of small particles in the sub micrometer region. It operates in reciprocal space, by analyzing the signal fluctuations with the photon auto correlation function. Equally, pulsed field gradient magnetic resonance is a technique generating data in the reciprocal space of the density distribution of an object. Here we show the feasibility of employing a magnetic resonance imaging system as a dynamic scattering device similar to dynamic light scattering appliances. By acquiring a time series of single data points from reciprocal space, analogue to dynamic light scattering, we demonstrate the examination of motion patterns of microscopic particles. This method allows the examination of particle dynamics significantly below the spatial resolution of magnetic resonance imaging. It is not limited by relaxation times and covers a wide field of applications for particle or cell motion in opaque media.}, language = {en} } @article{HorvatVogelKampfetal.2020, author = {Horvat, Sonja and Vogel, Patrick and Kampf, Thomas and Brandl, Andreas and Alshamsan, Aws and Alhadlaq, Hisham A. and Ahamed, Maqusood and Albrecht, Krystyna and Behr, Volker C. and Beilhack, Andreas and Groll, J{\"u}rgen}, title = {Crosslinked Coating Improves the Signal-to-Noise Ratio of Iron Oxide Nanoparticles in Magnetic Particle Imaging (MPI)}, series = {ChemNanoMat}, volume = {6}, journal = {ChemNanoMat}, number = {5}, doi = {10.1002/cnma.202000009}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214718}, pages = {755 -- 758}, year = {2020}, abstract = {Magnetic particle imaging is an emerging tomographic method used for evaluation of the spatial distribution of iron-oxide nanoparticles. In this work, the effect of the polymer coating on the response of particles was studied. Particles with covalently crosslinked coating showed improved signal and image resolution.}, language = {en} } @article{KurzKampfBuschleetal.2016, author = {Kurz, Felix T. and Kampf, Thomas and Buschle, Lukas R. and Schlemmer, Heinz-Peter and Bendszus, Martin and Heiland, Sabine and Ziener, Christian H.}, title = {Generalized moment analysis of magnetic field correlations for accumulations of spherical and cylindrical magnetic perturbers}, series = {Frontiers in Physics}, volume = {4}, journal = {Frontiers in Physics}, issn = {2296-424X}, doi = {10.3389/fphy.2016.00046}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190604}, year = {2016}, abstract = {In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin dephasing in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-)reactive processes that involve Brownian motion, allows deriving analytical expressions of the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate) monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times.}, language = {en} } @article{KurzKampfBuschleetal.2015, author = {Kurz, Felix T. and Kampf, Thomas and Buschle, Lukas R. and Schlemmer, Heinz-Peter and Heiland, Sabine and Bendszus, Martin and Ziener, Christian H.}, title = {Microstructural Analysis of Peripheral Lung Tissue through CPMG Inter-Echo Time R2 Dispersion}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {11}, doi = {10.1371/journal.pone.0141894}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138345}, pages = {e0141894}, year = {2015}, abstract = {Since changes in lung microstructure are important indicators for (early stage) lung pathology, there is a need for quantifiable information of diagnostically challenging cases in a clinical setting, e.g. to evaluate early emphysematous changes in peripheral lung tissue. Considering alveoli as spherical air-spaces surrounded by a thin film of lung tissue allows deriving an expression for Carr-Purcell-Meiboom-Gill transverse relaxation rates R-2 with a dependence on inter-echo time, local air-tissue volume fraction, diffusion coefficient and alveolar diameter, within a weak field approximation. The model relaxation rate exhibits the same hyperbolic tangent dependency as seen in the Luz-Meiboom model and limiting cases agree with Brooks et al. and Jensen et al. In addition, the model is tested against experimental data for passively deflated rat lungs: the resulting mean alveolar radius of RA = 31.46 \(\pm\) 13.15 \(\mu\)m is very close to the literature value (similar to 34 \(\mu\)m). Also, modeled radii obtained from relaxometer measurements of ageing hydrogel foam (that mimics peripheral lung tissue) are in good agreement with those obtained from mu CT images of the same foam (mean relative error: 0.06 \(\pm\) 0.01). The model's ability to determine the alveolar radius and/or air volume fraction will be useful in quantifying peripheral lung microstructure.}, language = {en} } @article{RiedlKampfHeroldetal.2020, author = {Riedl, Katharina A. and Kampf, Thomas and Herold, Volker and Behr, Volker C. and Bauer, Wolfgang R.}, title = {Wall shear stress analysis using 17.6 Tesla MRI: A longitudinal study in ApoE\(^{-/-}\)mice with histological analysis}, series = {PLoS One}, volume = {15}, journal = {PLoS One}, number = {8}, doi = {10.1371/journal.pone.0238112}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229318}, year = {2020}, abstract = {This longitudinal study was performed to evaluate the feasibility of detecting the interaction between wall shear stress (WSS) and plaque development. 20 ApoE\(^{-/-}\)mice were separated in 12 mice with Western Diet and 8 mice with Chow Diet. Magnetic resonance (MR) scans at 17.6 Tesla and histological analysis were performed after one week, eight and twelve weeks. Allin vivoMR measurements were acquired using a flow sensitive phase contrast method for determining vectorial flow. Histological sections were stained with Hematoxylin and Eosin, Elastica van Gieson and CD68 staining. Data analysis was performed using Ensight and a Matlab-based "Flow Tool". The body weight of ApoE\(^{-/-}\)mice increased significantly over 12 weeks. WSS values increased in the Western Diet group over the time period; in contrast, in the Chow Diet group the values decreased from the first to the second measurement point. Western Diet mice showed small plaque formations with elastin fragmentations after 8 weeks and big plaque formations after 12 weeks; Chow Diet mice showed a few elastin fragmentations after 8 weeks and small plaque formations after 12 weeks. Favored by high-fat diet, plaque formation results in higher values of WSS. With wall shear stress being a known predictor for atherosclerotic plaque development, ultra highfield MRI can serve as a tool for studying the causes and beginnings of atherosclerosis.}, language = {en} } @article{VogelRueckertFriedrichetal.2022, author = {Vogel, Patrick and R{\"u}ckert, Martin Andreas and Friedrich, Bernhard and Tietze, Rainer and Lyer, Stefan and Kampf, Thomas and Hennig, Thomas and D{\"o}lken, Lars and Alexiou, Christoph and Behr, Volker Christian}, title = {Critical Offset Magnetic PArticle SpectroScopy for rapid and highly sensitive medical point-of-care diagnostics}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, doi = {10.1038/s41467-022-34941-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300893}, year = {2022}, abstract = {Magnetic nanoparticles (MNPs) have been adapted for many applications, e.g., bioassays for the detection of biomarkers such as antibodies, by controlled engineering of specific surface properties. Specific measurement of such binding states is of high interest but currently limited to highly sensitive techniques such as ELISA or flow cytometry, which are relatively inflexible, difficult to handle, expensive and time-consuming. Here we report a method named COMPASS (Critical-Offset-Magnetic-Particle-SpectroScopy), which is based on a critical offset magnetic field, enabling sensitive detection to minimal changes in mobility of MNP ensembles, e.g., resulting from SARS-CoV-2 antibodies binding to the S antigen on the surface of functionalized MNPs. With a sensitivity of 0.33 fmole/50 µl (≙7 pM) for SARS-CoV-2-S1 antibodies, measured with a low-cost portable COMPASS device, the proposed technique is competitive with respect to sensitivity while providing flexibility, robustness, and a measurement time of seconds per sample. In addition, initial results with blood serum demonstrate high specificity.}, language = {en} } @article{WeibelBasseLuesebrinkHessetal.2013, author = {Weibel, Stephanie and Basse-Luesebrink, Thomas Christian and Hess, Michael and Hofmann, Elisabeth and Seubert, Carolin and Langbein-Laugwitz, Johanna and Gentschev, Ivaylo and Sturm, Volker J{\"o}rg Friedrich and Ye, Yuxiang and Kampf, Thomas and Jakob, Peter Michael and Szalay, Aladar A.}, title = {Imaging of Intratumoral Inflammation during Oncolytic Virotherapy of Tumors by \(^{19}\)F-Magnetic Resonance Imaging (MRI)}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0056317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130311}, pages = {e56317}, year = {2013}, abstract = {Background Oncolytic virotherapy of tumors is an up-coming, promising therapeutic modality of cancer therapy. Unfortunately, non-invasive techniques to evaluate the inflammatory host response to treatment are rare. Here, we evaluate \(^{19}\)F magnetic resonance imaging (MRI) which enables the non-invasive visualization of inflammatory processes in pathological conditions by the use of perfluorocarbon nanoemulsions (PFC) for monitoring of oncolytic virotherapy. Methodology/Principal Findings The Vaccinia virus strain GLV-1h68 was used as an oncolytic agent for the treatment of different tumor models. Systemic application of PFC emulsions followed by \(^1H\)/\(^{19}\)F MRI of mock-infected and GLV-1h68-infected tumor-bearing mice revealed a significant accumulation of the \(^{19}\)F signal in the tumor rim of virus-treated mice. Histological examination of tumors confirmed a similar spatial distribution of the \(^{19}\)F signal hot spots and \(CD68^+\)-macrophages. Thereby, the \(CD68^+\)-macrophages encapsulate the GFP-positive viral infection foci. In multiple tumor models, we specifically visualized early inflammatory cell recruitment in Vaccinia virus colonized tumors. Furthermore, we documented that the \(^{19}\)F signal correlated with the extent of viral spreading within tumors. Conclusions/Significance These results suggest \(^{19}\)F MRI as a non-invasive methodology to document the tumor-associated host immune response as well as the extent of intratumoral viral replication. Thus, \(^{19}\)F MRI represents a new platform to non-invasively investigate the role of the host immune response for therapeutic outcome of oncolytic virotherapy and individual patient response.}, language = {en} } @article{WeiseBasseLuesebrinkKleinschnitzetal.2011, author = {Weise, Gesa and Basse-L{\"u}sebrink, Thomas C. and Kleinschnitz, Christoph and Kampf, Thomas and Jakob, Peter M. and Stoll, Guido}, title = {In Vivo Imaging of Stepwise Vessel Occlusion in Cerebral Photothrombosis of Mice by \(^{19}\)F MRI}, series = {PLoS One}, volume = {6}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0028143}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137792}, pages = {e28143}, year = {2011}, abstract = {Background \(^{19}\)F magnetic resonance imaging (MRI) was recently introduced as a promising technique for in vivo cell tracking. In the present study we compared \(^{19}\)F MRI with iron-enhanced MRI in mice with photothrombosis (PT) at 7 Tesla. PT represents a model of focal cerebral ischemia exhibiting acute vessel occlusion and delayed neuroinflammation. Methods/Principal Findings Perfluorocarbons (PFC) or superparamagnetic iron oxide particles (SPIO) were injected intravenously at different time points after photothrombotic infarction. While administration of PFC directly after PT induction led to a strong \(^{19}\)F signal throughout the entire lesion, two hours delayed application resulted in a rim-like \(^{19}\)F signal at the outer edge of the lesion. These findings closely resembled the distribution of signal loss on T2-weighted MRI seen after SPIO injection reflecting intravascular accumulation of iron particles trapped in vessel thrombi as confirmed histologically. By sequential administration of two chemically shifted PFC compounds 0 and 2 hours after illumination the different spatial distribution of the \(^{19}\)F markers (infarct core/rim) could be visualized in the same animal. When PFC were applied at day 6 the fluorine marker was only detected after long acquisition times ex vivo. SPIO-enhanced MRI showed slight signal loss in vivo which was much more prominent ex vivo indicative for neuroinflammation at this late lesion stage. Conclusion Our study shows that vessel occlusion can be followed in vivo by \(^{19}\)F and SPIO-enhanced high-field MRI while in vivo imaging of neuroinflammation remains challenging. The timing of contrast agent application was the major determinant of the underlying processes depicted by both imaging techniques. Importantly, sequential application of different PFC compounds allowed depiction of ongoing vessel occlusion from the core to the margin of the ischemic lesions in a single MRI measurement.}, language = {en} }