@article{GroeberEngelhardtLangeetal.2016, author = {Groeber, Florian and Engelhardt, Lisa and Lange, Julia and Kurdyn, Szymon and Schmid, Freia F. and R{\"u}cker, Christoph and Mielke, Stephan and Walles, Heike and Hansmann, Jan}, title = {A First Vascularized Skin Equivalent as an Alternative to Animal Experimentation}, series = {ALTEX - Alternatives to Animal Experimentation}, volume = {33}, journal = {ALTEX - Alternatives to Animal Experimentation}, number = {4}, doi = {10.14573/altex.1604041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164438}, pages = {415-422}, year = {2016}, abstract = {Tissue-engineered skin equivalents mimic key aspects of the human skin, and can thus be employed as wound coverage for large skin defects or as in vitro test systems as an alternative to animal models. However, current skin equivalents lack a functional vasculature limiting clinical and research applications. This study demonstrates the generation of a vascularized skin equivalent with a perfused vascular network by combining a biological vascularized scaffold (BioVaSc) based on a decellularized segment of a porcine jejunum and a tailored bioreactor system. Briefly, the BioVaSc was seeded with human fibroblasts, keratinocytes, and human microvascular endothelial cells. After 14 days at the air-liquid interface, hematoxylin \& eosin and immunohistological staining revealed a specific histological architecture representative of the human dermis and epidermis including a papillary-like architecture at the dermal-epidermal-junction. The formation of the skin barrier was measured non-destructively using impedance spectroscopy. Additionally, endothelial cells lined the walls of the formed vessels that could be perfused with a physiological volume flow. Due to the presence of a complex in-vivo-like vasculature, the here shown skin equivalent has the potential for skin grafting and represents a sophisticated in vitro model for dermatological research.}, language = {en} } @article{GroeberSchoberSchmidetal.2016, author = {Groeber, Florian and Schober, Lena and Schmid, Freia F. and Traube, Andrea and Kolbus-Hernandez, Silvia and Daton, Karolina and Hoffmann, Sebastian and Petersohn, Dirk and Schaefer-Korting, Monika and Walles, Heike and Mewes, Karsten R.}, title = {Catch-up validation study of an in vitro skin irritation test method based on an open source reconstructed epidermis (phase II)}, series = {Toxicology in Vitro}, volume = {36}, journal = {Toxicology in Vitro}, doi = {10.1016/j.tiv.2016.07.008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187311}, pages = {254-261}, year = {2016}, abstract = {To replace the Draize skin irritation assay (OECD guideline 404) several test methods based on reconstructed human epidermis (RHE) have been developed and were adopted in the OECD test guideline 439. However, all validated test methods in the guideline are linked to RHE provided by only three companies. Thus,the availability of these test models is dependent on the commercial interest of the producer. To overcome this limitation and thus to increase the accessibility of in vitro skin irritation testing, an open source reconstructed epidermis (OS-REp) was introduced. To demonstrate the capacity of the OS-REp in regulatory risk assessment, a catch-up-validation study was performed. The participating laboratories used in-house generated OS-REp to assess the set of 20 reference substances according to the performance standards amending the OECD test guideline 439. Testing was performed under blinded conditions. The within-laboratory reproducibility of 87\% and the inter-laboratory reproducibility of 85\% prove a high reliability of irritancy testing using the OS-REp protocol. In addition, the prediction capacity was with an accuracy of 80\% comparable to previous published RHE based test protocols. Taken together the results indicate that the OS-REp test method can be used as a standalone alternative skin irritation test replacing the OECD test guideline 404.}, language = {en} } @article{LotzSchmidRossietal.2016, author = {Lotz, Christian and Schmid, Freia F. and Rossi, Angela and Kurdyn, Szymon and Kampik, Daniel and De Wever, Bart and Walles, Heike and Groeber, Florian K.}, title = {Alternative Methods for the Replacement of Eye Irritation Testing}, series = {ALTEX - Alternatives to Animal Experimentation}, volume = {33}, journal = {ALTEX - Alternatives to Animal Experimentation}, number = {1}, doi = {10.14573/altex.1508241}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164444}, pages = {55-67}, year = {2016}, abstract = {In the last decades significant regulatory attempts were made to replace, refine and reduce animal testing to assess the risk of consumer products for the human eye. As the original in vivo Draize eye test is criticized for limited predictivity, costs and ethical issues, several animal-free test methods have been developed to categorize substances according to the global harmonized system (GHS) for eye irritation. This review summarizes the progress of alternative test methods for the assessment of eye irritation. Based on the corneal anatomy and current knowledge of the mechanisms causing eye irritation, different ex vivo and in vitro methods will be presented and discussed with regard to possible limitations and status of regulatory acceptance. In addition to established in vitro models, this review will also highlight emerging, full thickness cornea models that might be suited to predict all GHS categories.}, language = {en} }