@article{WolfahrtHermanScholzetal.2013, author = {Wolfahrt, Sonja and Herman, Sandra and Scholz, Claus-J{\"u}rgen and Sauer, Georg and Deissler, Helmut}, title = {Identification of alternative transcripts of rat CD9 expressed by tumorigenic neural cell lines and in normal tissues}, series = {Genetics and Molecular Biology}, volume = {36}, journal = {Genetics and Molecular Biology}, number = {2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131801}, pages = {276-281}, year = {2013}, abstract = {CD9 is the best-studied member of the tetraspanin family of transmembrane proteins. It is involved in various fundamental cellular processes and its altered expression is a characteristic of malignant cells of different origins. Despite numerous investigations confirming its fundamental role, the heterogeneity of CD9 or other tetraspanin proteins was considered only to be caused by posttranslational modification, rather than alternative splicing. Here we describe the first identification of CD9 transcript variants expressed by cell lines derived from fetal rat brain cells. Variant mRNA-B lacks a potential translation initiation codon in the alternative exon 1 and seems to be characteristic of the tumorigenic BT cell lines. In contrast, variant mRNA-C can be translated from a functional initiation codon located in its extended exon 2, and substantial amounts of this form detected in various tissues suggest a contribution to CD9 functions. From the alternative sequence of variant C, a different membrane topology ( 5 transmembrane domains) and a deviating spectrum of functions can be expected.}, language = {en} } @article{SchuetzJurastowBaderetal.2015, author = {Sch{\"u}tz, Burkhard and Jurastow, Innokentij and Bader, Sandra and Ringer, Cornelia and Engelhardt, Jakob von and Chubanov, Vladimir and Gudermann, Thomas and Diener, Martin and Kummer, Wolfgang and Krasteva-Christ, Gabriela and Weihe, Eberhard}, title = {Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract}, series = {Frontiers in Physiology}, volume = {6}, journal = {Frontiers in Physiology}, number = {87}, doi = {10.3389/fphys.2015.00087}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143550}, year = {2015}, abstract = {The mouse gastro-intestinal and biliary tract mucosal epithelia harbor choline acetyltransferase (ChAT)-positive brush cells with taste cell-like traits. With the aid of two transgenic mouse lines that express green fluorescent protein (EGFP) under the control of the ChAT promoter (EGFP\(^{ChAT}\)) and by using in situ hybridization and immunohistochemistry we found that EGFP\(^{ChAT}\) cells were clustered in the epithelium lining the gastric groove. EGFP\(^{ChAT}\) cells were numerous in the gall bladder and bile duct, and found scattered as solitary cells along the small and large intestine. While all EGFP\(^{ChAT}\) cells were also ChAT-positive, expression of the high-affinity choline transporter (ChT1) was never detected. Except for the proximal colon, EGFP\(^{ChAT}\) cells also lacked detectable expression of the vesicular acetylcholine transporter (VAChT). EGFP\(^{ChAT}\) cells were found to be separate from enteroendocrine cells, however they were all immunoreactive for cytokeratin 18 (CK18), transient receptor potential melastatin-like subtype 5 channel (TRPM5), and for cyclooxygenases 1 (COX1) and 2 (COX2). The ex vivo stimulation of colonic EGFP\(^{ChAT}\) cells with the bitter substance denatonium resulted in a strong increase in intracellular calcium, while in other epithelial cells such an increase was significantly weaker and also timely delayed. Subsequent stimulation with cycloheximide was ineffective in both cell populations. Given their chemical coding and chemosensory properties, EGFP\(^{ChAT}\) brush cells thus may have integrative functions and participate in induction of protective reflexes and inflammatory events by utilizing ACh and prostaglandins for paracrine signaling.}, language = {en} } @article{SchmittEckardtSchlegeletal.2015, author = {Schmitt, Jessica and Eckardt, Sigrid and Schlegel, Paul G and Sir{\´e}n, Anna-Leena and Bruttel, Valentin S and McLaughlin, K John and Wischhusen, J{\"o}rg and M{\"u}ller, Albrecht M}, title = {Human parthenogenetic embryonic stem cell-derived neural stem cells express HLA-G and show unique resistance to NK cell-mediated killing}, series = {Molecular Medicine}, volume = {21}, journal = {Molecular Medicine}, number = {2101185}, doi = {10.2119/molmed.2014.00188}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149170}, pages = {185-196}, year = {2015}, abstract = {Parent-of-origin imprints have been implicated in the regulation of neural differentiation and brain development. Previously we have shown that, despite the lack of a paternal genome, human parthenogenetic (PG) embryonic stem cells (hESCs) can form proliferating neural stem cells (NSCs) that are capable of differentiation into physiologically functional neurons while maintaining allele-specific expression of imprinted genes. Since biparental ("normal") hESC-derived NSCs (N NSCs) are targeted by immune cells, we characterized the immunogenicity of PG NSCs. Flow cytometry and immunocytochemistry revealed that both N NSCs and PG NSCs exhibited surface expression of human leukocyte antigen (HLA) class I but not HLA-DR molecules. Functional analyses using an in vitro mixed lymphocyte reaction assay resulted in less proliferation of peripheral blood mononuclear cells (PBMC) with PG compared with N NSCs. In addition, natural killer (NK) cells cytolyzed PG less than N NSCs. At a molecular level, expression analyses of immune regulatory factors revealed higher HLA-G levels in PG compared with N NSCs. In line with this finding, MIR152, which represses HLA-G expression, is less transcribed in PG compared with N cells. Blockage of HLA-G receptors ILT2 and KIR2DL4 on natural killer cell leukemia (NKL) cells increased cytolysis of PG NSCs. Together this indicates that PG NSCs have unique immunological properties due to elevated HLA-G expression.}, language = {en} } @article{SalvadorBurekFoerster2015, author = {Salvador, Ellaine and Burek, Malgorzata and F{\"o}rster, Carola Y.}, title = {Stretch and/or oxygen glucose deprivation (OGD) in an in vitro traumatic brain injury (TBI) model induces calcium alteration and inflammatory cascade}, series = {Frontiers in Cellular Neuroscience}, volume = {9}, journal = {Frontiers in Cellular Neuroscience}, number = {323}, doi = {10.3389/fncel.2015.00323}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148255}, year = {2015}, abstract = {The blood-brain barrier (BBB), made up of endothelial cells of capillaries in the brain, maintains the microenvironment of the central nervous system. During ischemia and traumatic brain injury (TBI), cellular disruption leading to mechanical insult results to the BBB being compromised. Oxygen glucose deprivation (OGD) is the most commonly used in vitro model for ischemia. On the other hand, stretch injury is currently being used to model TBI in vitro. In this paper, the two methods are used alone or in combination, to assess their effects on cerebrovascular endothelial cells cEND in the presence or absence of astrocytic factors. Applying severe stretch and/or OGD to cEND cells in our experiments resulted to cell swelling and distortion. Damage to the cells induced release of lactate dehydrogenase enzyme (LDH) and nitric oxide (NO) into the cell culture medium. In addition, mRNA expression of inflammatory markers interleukin (I L)-6, IL-1\(\alpha\) chemokine (C-C motif) ligand 2 (CCL2) and tumor necrosis factor (TNF)-\(\alpha\) also increased. These events could lead to the opening of calcium ion channels resulting to excitotoxicity. This could be demonstrated by increased calcium level in OGD-subjected cEND cells incubated with astrocyte-conditioned medium. Furthermore, reduction of cell membrane integrity decreased tight junction proteins claudin-5 and occludin expression. In addition, permeability of the endothelial cell monolayer increased. Also, since cell damage requires an increased uptake of glucose, expression of glucose transporter glut1 was found to increase at the mRNA level after OGD. Overall, the effects of OGD on cEND cells appear to be more prominent than that of stretch with regards to TJ proteins, NO, glutl expression, and calcium level. Astrocytes potentiate these effects on calcium level in cEND cells. Combining both methods to model TBI in vitro shows a promising improvement to currently available models.}, language = {en} } @article{PfeifferGuglielmiDombertJablonkaetal.2014, author = {Pfeiffer-Guglielmi, Brigitte and Dombert, Benjamin and Jablonka, Sibylle and Hausherr, Vanessa and van Thriel, Christoph and Schobel, Nicole and Jansen, Ralf-Peter}, title = {Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons}, series = {BMC Neuroscience}, volume = {15}, journal = {BMC Neuroscience}, number = {70}, issn = {1471-2202}, doi = {10.1186/1471-2202-15-70}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116049}, year = {2014}, abstract = {Background: Localization of mRNAs encoding cytoskeletal or signaling proteins to neuronal processes is known to contribute to axon growth, synaptic differentiation and plasticity. In addition, a still increasing spectrum of mRNAs has been demonstrated to be localized under different conditions and developing stages thus reflecting a highly regulated mechanism and a role of mRNA localization in a broad range of cellular processes. Results: Applying fluorescence in-situ-hybridization with specific riboprobes on cultured neurons and nervous tissue sections, we investigated whether the mRNAs for two metabolic enzymes, namely glycogen synthase (GS) and glycogen phosphorylase (GP), the key enzymes of glycogen metabolism, may also be targeted to neuronal processes. If it were so, this might contribute to clarify the so far enigmatic role of neuronal glycogen. We found that the mRNAs for both enzymes are localized to axonal and dendritic processes in cultured lumbar spinal motoneurons, but not in cultured trigeminal neurons. In cultured cortical neurons which do not store glycogen but nevertheless express glycogen synthase, the GS mRNA is also subject to axonal and dendritic localization. In spinal motoneurons and trigeminal neurons in situ, however, the mRNAs could only be demonstrated in the neuronal somata but not in the nerves. Conclusions: We could demonstrate that the mRNAs for major enzymes of neural energy metabolism can be localized to neuronal processes. The heterogeneous pattern of mRNA localization in different culture types and developmental stages stresses that mRNA localization is a versatile mechanism for the fine-tuning of cellular events. Our findings suggest that mRNA localization for enzymes of glycogen metabolism could allow adaptation to spatial and temporal energy demands in neuronal events like growth, repair and synaptic transmission.}, language = {en} } @article{LueffeBauerGiogaetal.2022, author = {L{\"u}ffe, Teresa M. and Bauer, Moritz and Gioga, Zoi and {\"O}zbay, Duru and Romanos, Marcel and Lillesaar, Christina and Drepper, Carsten}, title = {Loss-of-Function Models of the Metabotropic Glutamate Receptor Genes Grm8a and Grm8b Display Distinct Behavioral Phenotypes in Zebrafish Larvae (Danio rerio)}, series = {Frontiers in Molecular Neuroscience}, volume = {15}, journal = {Frontiers in Molecular Neuroscience}, issn = {1662-5099}, doi = {10.3389/fnmol.2022.901309}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-277429}, year = {2022}, abstract = {Members of the family of metabotropic glutamate receptors are involved in the pathomechanism of several disorders of the nervous system. Besides the well-investigated function of dysfunctional glutamate receptor signaling in neurodegenerative diseases, neurodevelopmental disorders (NDD), like autism spectrum disorders (ASD) and attention-deficit and hyperactivity disorder (ADHD) might also be partly caused by disturbed glutamate signaling during development. However, the underlying mechanism of the type III metabotropic glutamate receptor 8 (mGluR8 or GRM8) involvement in neurodevelopment and disease mechanism is largely unknown. Here we show that the expression pattern of the two orthologs of human GRM8, grm8a and grm8b, have evolved partially distinct expression patterns in the brain of zebrafish (Danio rerio), especially at adult stages, suggesting sub-functionalization of these two genes during evolution. Using double in situ hybridization staining in the developing brain we demonstrate that grm8a is expressed in a subset of gad1a-positive cells, pointing towards glutamatergic modulation of GABAergic signaling. Building on this result we generated loss-of-function models of both genes using CRISPR/Cas9. Both mutant lines are viable and display no obvious gross morphological phenotypes making them suitable for further analysis. Initial behavioral characterization revealed distinct phenotypes in larvae. Whereas grm8a mutant animals display reduced swimming velocity, grm8b mutant animals show increased thigmotaxis behavior, suggesting an anxiety-like phenotype. We anticipate that our two novel metabotropic glutamate receptor 8 zebrafish models may contribute to a deeper understanding of its function in normal development and its role in the pathomechanism of disorders of the central nervous system.}, language = {en} } @article{LiedtkeHofmannJakobetal.2020, author = {Liedtke, Daniel and Hofmann, Christine and Jakob, Franz and Klopocki, Eva and Graser, Stephanie}, title = {Tissue-Nonspecific Alkaline Phosphatase—A Gatekeeper of Physiological Conditions in Health and a Modulator of Biological Environments in Disease}, series = {Biomolecules}, volume = {10}, journal = {Biomolecules}, number = {12}, publisher = {MDPI}, issn = {2218-273X}, doi = {10.3390/biom10121648}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220096}, year = {2020}, abstract = {Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitously expressed enzyme that is best known for its role during mineralization processes in bones and skeleton. The enzyme metabolizes phosphate compounds like inorganic pyrophosphate and pyridoxal-5′-phosphate to provide, among others, inorganic phosphate for the mineralization and transportable vitamin B6 molecules. Patients with inherited loss of function mutations in the ALPL gene and consequently altered TNAP activity are suffering from the rare metabolic disease hypophosphatasia (HPP). This systemic disease is mainly characterized by impaired bone and dental mineralization but may also be accompanied by neurological symptoms, like anxiety disorders, seizures, and depression. HPP characteristically affects all ages and shows a wide range of clinical symptoms and disease severity, which results in the classification into different clinical subtypes. This review describes the molecular function of TNAP during the mineralization of bones and teeth, further discusses the current knowledge on the enzyme's role in the nervous system and in sensory perception. An additional focus is set on the molecular role of TNAP in health and on functional observations reported in common laboratory vertebrate disease models, like rodents and zebrafish.}, language = {en} } @article{LechermeierZimmerLueffeetal.2019, author = {Lechermeier, Carina G. and Zimmer, Frederic and L{\"u}ffe, Teresa M. and Lesch, Klaus-Peter and Romanos, Marcel and Lillesaar, Christina and Drepper, Carsten}, title = {Transcript analysis of zebrafish GLUT3 genes, slc2a3a and slc2a3b, define overlapping as well as distinct expression domains in the zebrafish (Danio rerio) central nervous system}, series = {Frontiers in Molecular Neuroscience}, volume = {12}, journal = {Frontiers in Molecular Neuroscience}, number = {199}, doi = {10.3389/fnmol.2019.00199}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201797}, year = {2019}, abstract = {The transport of glucose across the cell plasma membrane is vital to most mammalian cells. The glucose transporter (GLUT; also called SLC2A) family of transmembrane solute carriers is responsible for this function in vivo. GLUT proteins encompass 14 different isoforms in humans with different cell type-specific expression patterns and activities. Central to glucose utilization and delivery in the brain is the neuronally expressed GLUT3. Recent research has shown an involvement of GLUT3 genetic variation or altered expression in several different brain disorders, including Huntington's and Alzheimer's diseases. Furthermore, GLUT3 was identified as a potential risk gene for multiple psychiatric disorders. To study the role of GLUT3 in brain function and disease a more detailed knowledge of its expression in model organisms is needed. Zebrafish (Danio rerio) has in recent years gained popularity as a model organism for brain research and is now well-established for modeling psychiatric disorders. Here, we have analyzed the sequence of GLUT3 orthologs and identified two paralogous genes in the zebrafish, slc2a3a and slc2a3b. Interestingly, the Glut3b protein sequence contains a unique stretch of amino acids, which may be important for functional regulation. The slc2a3a transcript is detectable in the central nervous system including distinct cellular populations in telencephalon, diencephalon, mesencephalon and rhombencephalon at embryonic and larval stages. Conversely, the slc2a3b transcript shows a rather diffuse expression pattern at different embryonic stages and brain regions. Expression of slc2a3a is maintained in the adult brain and is found in the telencephalon, diencephalon, mesencephalon, cerebellum and medulla oblongata. The slc2a3b transcripts are present in overlapping as well as distinct regions compared to slc2a3a. Double in situ hybridizations were used to demonstrate that slc2a3a is expressed by some GABAergic neurons at embryonic stages. This detailed description of zebrafish slc2a3a and slc2a3b expression at developmental and adult stages paves the way for further investigations of normal GLUT3 function and its role in brain disorders.}, language = {en} } @article{IpKronerGrohetal.2012, author = {Ip, Chi Wang and Kroner, Antje and Groh, Janos and Huber, Marianne and Klein, Dennis and Spahn, Irene and Diem, Ricarda and Williams, Sarah K. and Nave, Klaus-Armin and Edgar, Julia M. and Martini, Rudolf}, title = {Neuroinflammation by Cytotoxic T-Lymphocytes Impairs Retrograde Axonal Transport in an Oligodendrocyte Mutant Mouse}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {8}, doi = {10.1371/journal.pone.0042554}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134982}, pages = {e42554}, year = {2012}, abstract = {Mice overexpressing proteolipid protein (PLP) develop a leukodystrophy-like disease involving cytotoxic, CD8+ T-lymphocytes. Here we show that these cytotoxic T-lymphocytes perturb retrograde axonal transport. Using fluorogold stereotactically injected into the colliculus superior, we found that PLP overexpression in oligodendrocytes led to significantly reduced retrograde axonal transport in retina ganglion cell axons. We also observed an accumulation of mitochondria in the juxtaparanodal axonal swellings, indicative for a disturbed axonal transport. PLP overexpression in the absence of T-lymphocytes rescued retrograde axonal transport defects and abolished axonal swellings. Bone marrow transfer from wildtype mice, but not from perforin- or granzyme B-deficient mutants, into lymphocyte-deficient PLP mutant mice led again to impaired axonal transport and the formation of axonal swellings, which are predominantly located at the juxtaparanodal region. This demonstrates that the adaptive immune system, including cytotoxic T-lymphocytes which release perforin and granzyme B, are necessary to perturb axonal integrity in the PLP-transgenic disease model. Based on our observations, so far not attended molecular and cellular players belonging to the immune system should be considered to understand pathogenesis in inherited myelin disorders with progressive axonal damage.}, language = {en} } @article{IoakeimidisOttKozjakPavlovicetal.2014, author = {Ioakeimidis, Fotis and Ott, Christine and Kozjak-Pavlovic, Vera and Violitzi, Foteini and Rinotas, Vagelis and Makrinou, Eleni and Eliopoulos, Elias and Fasseas, Costas and Kollias, George and Douni, Eleni}, title = {A Splicing Mutation in the Novel Mitochondrial Protein DNAJC11 Causes Motor Neuron Pathology Associated with Cristae Disorganization, and Lymphoid Abnormalities in Mice}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {8}, doi = {10.1371/journal.pone.0104237}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115581}, pages = {e104237}, year = {2014}, abstract = {Mitochondrial structure and function is emerging as a major contributor to neuromuscular disease, highlighting the need for the complete elucidation of the underlying molecular and pathophysiological mechanisms. Following a forward genetics approach with N-ethyl-N-nitrosourea (ENU)-mediated random mutagenesis, we identified a novel mouse model of autosomal recessive neuromuscular disease caused by a splice-site hypomorphic mutation in a novel gene of unknown function, DnaJC11. Recent findings have demonstrated that DNAJC11 protein co-immunoprecipitates with proteins of the mitochondrial contact site (MICOS) complex involved in the formation of mitochondrial cristae and cristae junctions. Homozygous mutant mice developed locomotion defects, muscle weakness, spasticity, limb tremor, leucopenia, thymic and splenic hypoplasia, general wasting and early lethality. Neuropathological analysis showed severe vacuolation of the motor neurons in the spinal cord, originating from dilatations of the endoplasmic reticulum and notably from mitochondria that had lost their proper inner membrane organization. The causal role of the identified mutation in DnaJC11 was verified in rescue experiments by overexpressing the human ortholog. The full length 63 kDa isoform of human DNAJC11 was shown to localize in the periphery of the mitochondrial outer membrane whereas putative additional isoforms displayed differential submitochondrial localization. Moreover, we showed that DNAJC11 is assembled in a high molecular weight complex, similarly to mitofilin and that downregulation of mitofilin or SAM50 affected the levels of DNAJC11 in HeLa cells. Our findings provide the first mouse mutant for a putative MICOS protein and establish a link between DNAJC11 and neuromuscular diseases.}, language = {en} }