@article{BodemSchromMoschalletal.2013, author = {Bodem, Jochen and Schrom, Eva-Maria and Moschall, Rebecca and Hartl, Maximilian J. and Weitner, Helena and Fecher, David and Langemeier, J{\"o}rg and W{\"o}hrl, Brigitta M.}, title = {U1snRNP-mediated suppression of polyadenylation in conjunction with the RNA structure controls poly (A) site selection in foamy viruses}, series = {Retrovirology}, journal = {Retrovirology}, doi = {10.1186/1742-4690-10-55}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96085}, year = {2013}, abstract = {Background During reverse transcription, retroviruses duplicate the long terminal repeats (LTRs). These identical LTRs carry both promoter regions and functional polyadenylation sites. To express full-length transcripts, retroviruses have to suppress polyadenylation in the 5′LTR and activate polyadenylation in the 3′LTR. Foamy viruses have a unique LTR structure with respect to the location of the major splice donor (MSD), which is located upstream of the polyadenylation signal. Results Here, we describe the mechanisms of foamy viruses regulating polyadenylation. We show that binding of the U1 small nuclear ribonucleoprotein (U1snRNP) to the MSD suppresses polyadenylation at the 5′LTR. In contrast, polyadenylation at the 3′LTR is achieved by adoption of a different RNA structure at the MSD region, which blocks U1snRNP binding and furthers RNA cleavage and subsequent polyadenylation. Conclusion Recently, it was shown that U1snRNP is able to suppress the usage of intronic cryptic polyadenylation sites in the cellular genome. Foamy viruses take advantage of this surveillance mechanism to suppress premature polyadenylation at the 5'end of their RNA. At the 3'end, Foamy viruses use a secondary structure to presumably block access of U1snRNP and thereby activate polyadenylation at the end of the genome. Our data reveal a contribution of U1snRNP to cellular polyadenylation site selection and to the regulation of gene expression.}, subject = {Polyadenylierung}, language = {en} } @article{BodemRethwilm2013, author = {Bodem, Jochen and Rethwilm, Axel}, title = {Evolution of Foamy Viruses: The Most Ancient of All Retroviruses}, series = {Viruses}, journal = {Viruses}, doi = {10.3390/v5102349}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97312}, year = {2013}, abstract = {Recent evidence indicates that foamy viruses (FVs) are the oldest retroviruses (RVs) that we know and coevolved with their hosts for several hundred million years. This coevolution may have contributed to the non-pathogenicity of FVs, an important factor in development of foamy viral vectors in gene therapy. However, various questions on the molecular evolution of FVs remain still unanswered. The analysis of the spectrum of animal species infected by exogenous FVs or harboring endogenous FV elements in their genome is pivotal. Furthermore, animal studies might reveal important issues, such as the identification of the FV in vivo target cells, which than require a detailed characterization, to resolve the molecular basis of the accuracy with which FVs copy their genome. The issues of the extent of FV viremia and of the nature of the virion genome (RNA vs. DNA) also need to be experimentally addressed.}, language = {en} } @book{BockGauchGiernatetal.2013, author = {Bock, Stefanie and Gauch, Fabian and Giernat, Yannik and Hillebrand, Frank and Kozlova, Darja and Linck, Lisa and Moschall, Rebecca and Sauer, Markus and Schenk, Christian and Ulrich, Kristina and Bodem, Jochen}, title = {HIV-1 : Lehrbuch von Studenten f{\"u}r Studenten}, organization = {Bachelor- und Masterkurs Virologie 2013}, isbn = {978-3-923959-90-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78980}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Dies ist ein Lehrbuch {\"u}ber die HIV-1 Replikation, Pathogenese und Therapie. Es richtet sich an Studenten der Biologie und der Medizin, die etwas mehr {\"u}ber HIV erfahren wollen und stellt neben virologischen Themen auch die zellul{\"a}ren Grundlagen dar. Es umfasst den Viruseintritt, die reverse Transkription, Genom-Integration, Transkriptionsregualtion, die Kotrolle des Spleißens, der Polyadenylierung und des RNA-Exportes. Die Darstellung wird abgerundet mit Kapiteln zum intrazellul{\"a}rem Transport, zu Nef und zum Virusassembly. In zwei weiteren Kapitel wird die HIV-1 Pathogenese und die Therapie besprochen. Zur Lernkontrolle sind den Kapiteln Fragen und auch Klausurfragen angef{\"u}gt.}, subject = {HIV}, language = {de} }