@phdthesis{Braun2016, author = {Braun, Tristan}, title = {Spektroskopie an positionierten III-V-Halbleiterquantenpunkten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146151}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Viele Forschergruppen konzentrieren sich derzeit auf die Entwicklung von neuartigen Technologien, welche den Weg f{\"u}r die kommerzielle Nutzung einer Quantenkommunikation bereiten sollen. Erste Erfolge konnten dabei insbesondere auf dem Gebiet der Quantenschl{\"u}sselverteilung erzielt werden. In diesem Bereich nutzt man die Eigenschaft einzelner, ununterscheidbarer Photonen nicht kopiert werden zu k{\"o}nnen, um eine abh{\"o}rsichere {\"U}bertragung sensibler Daten zu realisieren. Als Lichtquellen daf{\"u}r eignen sich Halbleiter-Quantenpunkte. Diese Quantenpunkte lassen sich außerdem leicht in komplexe Halbleiter-Mikrostrukturen integrieren und sind somit besonders interessant f{\"u}r die Entwicklung solch fortschrittlicher Technologien, welche f{\"u}r eine abh{\"o}rischere Kommunikation notwendig sind. Basierend auf diesem Hintergrund wurden in der vorliegenden Arbeit Halbleiter-Quantenpunkte spektroskopisch hinsichtlich ihres Potentials als Quanten-Lichtquelle f{\"u}r die Quantenkommunikation untersucht. Dabei wurden die Quantenpunkte aus InAs/GaAs und InP/GaInP unter anderem in einem speziellen Verfahren deterministisch positioniert und letztendlich in eine photonische Mikrostruktur integriert, welche aus einer Goldscheibe und einem dielektrischen Spiegel besteht. Als Grundcharakterisierungsmittel kam haupts{\"a}chlich die Mikrophotolumineszenzspektroskopie zur Bestimmung der Emissionseigenschaften zum Einsatz. Weiterf{\"u}hrend wurden Photonen-Korrelationsmessungen zweiter Ordnung durchgef{\"u}hrt, um den Nachweis einer Quanten-Lichtquelle zu erbringen. Einfluss eines RTA-Prozesses auf die Emissionseigenschaften von InAs/GaAs-Quantenpunkten Zur Untersuchung des Einflusses eines Rapid-Thermal-Annealing-Prozesses auf die elektronischen Eigenschaften und die Oszillatorst{\"a}rke selbstorganisierter InAs/GaAs-Quantenpunkte wurden Mikrophotolumineszenzmessungen an verschiedenen Proben im externen Magnetfeld von bis zu 5 T durchgef{\"u}hrt. Die Quantenpunkte wurden dabei in einem besonderen Verfahren gewachsen, bei dem die nominelle Quantenpunkth{\"o}he durch eine bestimmte Bedeckungsschichtdicke vorgegeben wurde. Insgesamt wurden drei Proben mit Schichtdicken von 2 nm, 3 nm und 4 nm hergestellt, die jeweils nachtr{\"a}glich bei Temperaturen von 750° C bis 850° C f{\"u}r f{\"u}nf Minuten ausgeheilt wurden. Anhand polarisationsaufgel{\"o}ster Spektroskopie konnten aus den aufgenommenen Quantenpunktspektren die Zeemanaufspaltung und die diamagnetische Verschiebung extrahiert und damit der effektive Land{\´e} g-Faktor sowie der diamagnetische Koeffizient bestimmt werden. Die Auswertung der Zeemanaufspaltung zeigte, dass sowohl h{\"o}here Ausheiltemperaturen als auch dickere Bedeckungsschichten zu einer drastischen Abnahme der absoluten g-Faktoren sorgen. Dies l{\"a}sst darauf schließen, dass eine dickere Bedeckungsschicht zu einer st{\"a}rkeren Interdiffusion der Atome und einer steigenden Ausdehnung der Quantenpunkte f{\"u}r ex-situ Ausheilprozesse f{\"u}hrt. Im Gegensatz dazu steigen die diamagnetischen Koeffizienten der Quantenpunkte mit zunehmender Ausheiltemperatur, was auf eine Ausdehnung der Exzitonwellenfunktion hindeutet. Außerdem wurden mittels zeitaufgel{\"o}ster Mikrophotolumineszenzspektroskopie die Lebensdauern am Quantenpunktensemble bestimmt und eine Abnahme dieser mit steigender Temperatur festgestellt. Sowohl {\"u}ber die Untersuchungen des diamagnetischen Koeffizienten als auch {\"u}ber die Analyse der Lebensdauer konnte schließlich die Oszillatorst{\"a}rke der Quantenpunkte ermittelt werden. Beide Messverfahren lieferten innerhalb der Fehlergrenzen {\"a}hnliche Ergebnisse. Die h{\"o}chste Oszillatorst{\"a}rke \(f_{\chi}=34,7\pm 5,2\) konnte f{\"u}r eine Schichtdicke von d = 3 nm und einer Ausheiltemperatur von 850° C {\"u}ber den diamagnetischen Koeffizienten berechnet werden. Im Falle der Bestimmung {\"u}ber die Lebensdauer ergab sich ein maximaler Wert von \(f_{\tau}=25,7\pm 5,7\). Dies entspricht einer deutlichen Steigerung der Oszillatorst{\"a}rke im Vergleich zu den Referenzproben um einem Faktor gr{\"o}ßer als zwei. Des Weiteren konnte eine Ausdehnung der Schwerpunktswellenfunktion der Exzitonen um etwa 70\% festgestellt werden. Insgesamt betrachtet, l{\"a}sst sich durch ex-situ Rapid-Thermal-Annealing-Prozesse die Oszillatorst{\"a}rke nachtr{\"a}glich deutlich erh{\"o}hen, wodurch InAs/GaAs-Quantenpunkte noch interessanter f{\"u}r Untersuchungen im Regime der starken Kopplung werden. Temperatur- und Leistungsabh{\"a}ngigkeit der Emissionseigenschaften positionierter InAs/GaAs Quantenpunkte Um einen Einblick in den Ablauf des Zerfallsprozesses eines Exzitons in positionierten Quantenpunkten zu bekommen, wurden temperatur- und leistungsabh{\"a}ngige Messungen durchgef{\"u}hrt. Diese Quantenpunkte wurden in einem speziellen Verfahren deterministisch an vorher definierten Stellen gewachsen. Anhand der Temperaturserien konnten dann R{\"u}ckschl{\"u}sse auf die auftretenden Verlustkan{\"a}le in einem Quantenpunkt und dessen Emissionseigenschaften gezogen werden. Dabei wurden zwei dominante Prozesse als Ursache f{\"u}r den Intensit{\"a}tsabfall bei h{\"o}heren Temperaturen identifiziert. Die Anhebung der Elektronen im Grundzustand in die umgebende Barriere oder in delokalisierte Zust{\"a}nde in der Benetzungsschicht sorgt f{\"u}r die anf{\"a}ngliche Abnahme der Intensit{\"a}t bei niedrigeren Temperaturen. Der starke Abfall bei h{\"o}heren Temperaturen ist dagegen dem Aufbruch der exzitonischen Bindung und der thermischen Aktivierung der Ladungstr{\"a}ger in das umgebende Substratmaterial geschuldet. Hierbei lassen sich exemplarisch f{\"u}r zwei verschiedene Quantenpunkte die Aktivierungsenergien \(E_{2A}=(102,2\pm 0,4)\) meV und \(E_{2B}=(163,2\pm 1,3)\) meV bestimmen, welche in etwa den Lokalisierungsenergien der Exzitonen in dem jeweiligen Quantenpunkt von 100 meV bzw. 144 meV entsprechen. Weiterhin deckte die Auswertung des Intensit{\"a}tsprofils der Exzitonemission die Streuung der Exzitonen an akustischen und optischen Phononen als Hauptursache f{\"u}r die Zunahme der Linienbreite auf. F{\"u}r hohe Temperaturen dominierte die Wechselwirkung mit longitudinalen optischen Phononen den Verlauf und es konnten f{\"u}r das InAs/GaAs Materialsystem typische Phononenenergien von \(E_{LOA}=(30,9\pm 4,8)\) meV und \(E_{LOB}=(32,2\pm 0,8)\) meV bestimmt werden. In abschließenden Messungen der Leistungsabh{\"a}ngigkeit der Linienbreite wurde festgestellt, dass spektrale Diffusion die inh{\"a}rente Grenze f{\"u}r die Linienbreite bei niedrigen Temperaturen setzt. Optische Spektroskopie an positionierten InP/GaInP-Quantenpunkten Weiterhin wurden positionierte InP/GaInP-Quantenpunkte hinsichtlich der Nutzung als Quanten-Lichtquelle optisch spektroskopiert. Zun{\"a}chst wurden die Emissionseigenschaften der Quantenpunkte in grundlegenden Experimenten analysiert. Leistungs- und polarisationsabh{\"a}ngige Messungen ließen dabei die Vermutung sowohl auf exzitonische als auch biexzitonische Zerfallsprozesse zu. Weiterhin brachten die Untersuchungen der Polarisation einen ungew{\"o}hnlich hohen Polarisationsgrad der Quantenpunktemission hervor. Aufgrund von lokalen Ordnungsph{\"a}nomenen in der umgebenden GaInP-Matrix wurden im Mittel {\"u}ber 66 Quantenpunkte der Grad der Polarisation von Exziton und Biexziton zu \(p_{Mittel}=(93^{+7}_{-9})\)\% bestimmt. Des Weiteren wiesen die Quantenpunkte eine sehr hohe Feinstrukturaufspaltung von \(\Delta_{FSS}^{Mittel}=(300\pm 130)\) µeV auf, welche sich nur durch eine stark anisotrope Quantenpunktform erkl{\"a}ren l{\"a}sst. Durch Auto- und Kreuzkorrelationsmessungen zweiter Ordnung wurden dann sowohl der nicht-klassische Einzelphotonencharakter von Exziton und Biexziton als auch erstmalig f{\"u}r diese Strukturen der kaskadierte Zerfall der Biexziton-Exziton-Kaskade demonstriert. Hierbei wurden \(g^{(2)}(0)\)-Werte von bis 0,08 erreicht. Diese Ergebnisse zeigen das Potential von positionierten InP/GaInP-Quantenpunkten als Grundbausteine f{\"u}r Quanten-Lichtquellen, insbesondere in Bezug auf den Einsatz in der Quantenkommunikation. Realisierung einer Einzelphotonenquelle auf Basis einer Tamm-Plasmonen-Struktur Nachdem die vorangegangen Untersuchungen die Eignung der positionierten InP/GaInP-Quantenpunkte als Emitter einzelner Photonen demonstrierten, befasst sich dieser Teil nun mit der Integration dieser Quantenpunkte in eine Tamm-Plasmonen-Struktur zur Realisierung einer effizienten Einzelphotonenquelle. Diese Strukturen bestehen aus einem dielektrischen Spiegel aus 30,5 AlGaAs/AlAs-Schichtpaaren und einer einigen Zehn Nanometer dicken Goldschicht, zwischen denen die Quantenpunkte eingebettet sind. Anhand von Messungen an einer planaren Tamm-Plasmonen-Struktur wurde das Bauteil charakterisiert und neben der Exziton- und Biexzitonemission der Zerfall eines Trions beobachtet, was durch Polarisations- und Korrelationsmessungen nachgewiesen wurde. Um eine Verst{\"a}rkung der Einzelphotonenemission durch die Kopplung der Teilchen an eine lokalisierte Tamm-Plasmonen-Mode demonstrieren zu k{\"o}nnen, wurde ein Bereich der Probe mit mehreren Goldscheiben von Durchmessern von 3-6 µm abgerastert und die Lichtintensit{\"a}t aufgenommen. Unterhalb der untersuchten Goldscheiben konnte eine signifikante Erh{\"o}hung des Lumineszenzsignals festgestellt werden. Eine quantitative Analyse eines einzelnen Quantenpunktes mittels einer Temperaturserie lieferte dabei eine maximale Emissionsrate von \(\eta_{EPQ}^{Max}=(6,95\pm 0,76)\) MHz und damit eine Effizienz von \((6,95\pm 0,76)\)\% solch einer Einzelphotonenquelle unter gepulster Anregung bei 82 MHz. Dies entspricht einer deutlichen Verbesserung der Effizienz im Vergleich zu Quantenpunkten im Volumenmaterial und sogar zu denen in einer planaren DBR-Resonatorstruktur. Positionierte InP/GaInP-Quantenpunkte in einer Tamm-Plasmonen-Struktur bilden somit eine vielversprechende Basis f{\"u}r die Realisierung hocheffizienter Einzelphotonenquellen.}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} }