@phdthesis{Hein2014, author = {Hein, Melanie}, title = {Functional analysis of angiogenic factors in tumor cells and endothelia}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93863}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Tumor angiogenesis is essential for the growth of solid tumors as their proliferation and survival is dependent on consistent oxygen and nutrient supply. Anti-angiogenic treatments represent a therapeutic strategy to inhibit tumor growth by preventing the formation of new blood vessels leading to starvation of the tumor. One of the best characterized anti angiogenic therapeutics is the monoclonal antibody bevacizumab (Avastin), which targets and neutralizes VEGF leading to disruption of the VEGF signaling pathway. Until today, bevacizumab has found its way into clinical practice and has gained approval for treatment of different types of cancer including colorectal cancer, non-small cell lung cancer, breast cancer and renal cell carcinoma. Signaling of VEGF is mediated through VEGF receptors, mainly VEGFR2, which are primarily located on the cell surface of endothelial cells. However, there has been evidence that expression of VEGF receptors can also be found on tumor cells themselves raising the possibility of autocrine and/or paracrine signaling loops. Thus, tumor cells could also benefit from VEGF signaling, which would promote tumor growth. The aim of this study was to investigate if bevacizumab has a direct effect on tumor cells in vitro. To this end, tumor cell lines from the NCI-60 panel derived from four different tumor types were treated with bevacizumab and angiogenic gene and protein expression as well as biological outputs including proliferation, migration and apoptosis were investigated. Most of the experiments were performed under hypoxia to mimic the in vivo state of tumors. Overall, there was a limited measurable effect of bevacizumab on treated tumor cell lines according to gene and protein expression changes as well as biological functions when compared to endothelial controls. Minor changes in terms of proliferation or gene regulation were evident in a single tumor cell line after VEGF-A blockade by bevacizumab, which partially demonstrated a direct effect on tumor cells. However, the overall analysis revealed that tumor cell lines are not intrinsically affected in an adverse manner by bevacizumab treatment. Besides the functional analysis of tumor cells, embryonic stem cell derived endothelial cells were characterized to delineate vascular Hey gene functions. Hey and Hes proteins are the best characterized downstream effectors of the evolutionary conserved Notch signaling pathway, which mainly act as transcriptional repressors regulating downstream target genes. Hey proteins play a crucial role in embryonic development as loss of Hey1 and Hey2 in mice in vivo leads to a severe vascular phenotype resulting in early embryonic lethality. The major aim of this part of the thesis was to identify vascular Hey target genes using embryonic stem cell derived endothelial cells utilizing a directed endothelial differentiation approach, as ES cells and their differentiation ability provide a powerful in vitro system to study developmental processes. To this end, Hey deficient and Hey wildtype embryonic stem cells were stably transfected with an antibiotic selection marker driven by an endothelial specific promoter, which allows selection for endothelial cells. ESC-derived endothelial cells exhibited typical endothelial characteristics as shown by marker gene expression, immunofluorescent staining and tube formation ability. In a second step, Hey deficient ES cells were stably transfected with doxycycline inducible Flag-tagged Hey1 and Hey2 transgenes to re-express Hey proteins in the respective cell line. RNA-Sequencing of Hey deficient and Hey overexpressing ES cells as well as ESC-derived endothelial cells revealed many Hey downstream target genes in ES cells and fewer target genes in endothelial cells. Hey1 and Hey2 more or less redundantly regulate target genes in ES cells, but some genes were regulated by Hey2 alone. According to Gene Ontology term analysis, Hey target genes are mainly involved in embryonic development and transcriptional regulation. However, the response of ESC-derived endothelial cells in regulating Hey downstream target genes was rather limited when compared to ES cells, which could be due to lower transgene expression in endothelial cells. The limited response also raises the possibility that target gene regulation in endothelial cells is not only dependent on Hey gene functions alone and thus loss or overexpression of Hey genes in this in vitro setting does not influence target gene regulation.}, subject = {Krebs }, language = {en} }