@article{ZinnerSperlichWahletal.2015, author = {Zinner, Christoph and Sperlich, Billy and Wahl, Patrick and Mester, Joachim}, title = {Classification of selected cardiopulmonary variables of elite athletes of different age, gender, and disciplines during incremental exercise testing}, series = {SpringerPlus}, volume = {4}, journal = {SpringerPlus}, number = {544}, doi = {10.1186/s40064-015-1341-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126275}, year = {2015}, abstract = {Incremental exercise testing is frequently used as a tool for evaluating determinants of endurance performance. The available reference values for the peak oxygen uptake \((VO_{2peak})\), \% of \(VO_{2peak}\) , running speed at the lactate threshold \((v_{LT})\), running economy (RE), and maximal running speed \((v_{peak})\) for different age, gender, and disciplines are not sufficient for the elite athletic population. The key variables of 491 young athletes (age range 12-21 years; 250 males, 241 females) assessed during a running step test protocol \((2.4 m s^{-1} ; increase 0.4 m s^{-1} 5 min^{-1})\) were analysed in five subgroups, which were related to combat-, team-, endurance-, sprint- and power-, and racquet-related disciplines. Compared with female athletes, male athletes achieved a higher \(v_{peak}\) (P = 0.004). The body mass, lean body mass, height, abs. \(VO_{2peak} (ml min^{-1})\), rel. \(VO_{2peak} (ml kg^{-1} min^{-1})\), rel. \(VO_{2peak} (ml min^{-1} kg^{-0.75})\), and RE were higher in the male participants compared with the females (P < 0.01). The \% of \(VO_2\) at \(v_{LT}\) was lower in the males compared with the females (P < 0.01). No differences between gender were detected for the \(v_{LT}\) (P = 0.17) and \% of \(VO_2\) at \(v_{LT}\) (P = 0.42). This study is one of the first to provide a broad spectrum of data to classify nearly 500 elite athletes aged 12-21 years of both gender and different disciplines.}, language = {en} } @article{ZinnerSperlichKruegeretal.2015, author = {Zinner, Christoph and Sperlich, Billy and Krueger, Malte and Focke, Tim and Reed, Jennifer and Mester, Joachim}, title = {Strength, Endurance, Throwing Velocity and in-Water Jump Performance of Elite German Water Polo Players}, series = {Journal of Human Kinetics}, volume = {45}, journal = {Journal of Human Kinetics}, doi = {10.1515/hukin-2015-0015}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148812}, pages = {149-156}, year = {2015}, abstract = {The purpose of this study was threefold: 1) to assess the eggbeater kick and throwing performance using a number of water polo specific tests, 2) to explore the relation between the eggbeater kick and throwing performance, and 3) to investigate the relation between the eggbeater kick in the water and strength tests performed in a controlled laboratory setting in elite water polo players. Fifteen male water polo players of the German National Team completed dynamic and isometric strength tests for muscle groups (adductor, abductor, abdominal, pectoralis) frequently used during water polo. After these laboratory strength tests, six water polo specific in-water tests were conducted. The eggbeater kick assessed leg endurance and agility, maximal throwing velocity and jump height. A 400 m test and a sprint test examined aerobic and anaerobic performance. The strongest correlation was found between jump height and arm length (p < 0.001, r = 0.89). The laboratory diagnostics of important muscles showed positive correlations with the results of the in-water tests (p < 0.05, r = 0.52-0.70). Muscular strength of the adductor, abdominal and pectoralis muscles was positively related to in-water endurance agility as assessed by the eggbeater kick (p < 0.05; r = 0.53-0.66). Findings from the current study emphasize the need to assess indices of water polo performance both in and out of the water as well as the relation among these parameters to best assess the complex profile of water polo players.}, language = {en} } @article{SperlichHolmbergReedetal.2015, author = {Sperlich, Paula F. and Holmberg, Hans-Christer and Reed, Jennifer L. and Zinner, Christoph and Mester, Joachim and Sperlich, Billy}, title = {Individual versus standardized running protocols in the determination of VO\(_{2max}\)}, series = {Journal of Sports Science and Medicine}, volume = {14}, journal = {Journal of Sports Science and Medicine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151890}, pages = {386-393}, year = {2015}, abstract = {The purpose of this study was to determine whether an individually designed incremental exercise protocol results in greater rates of oxygen uptake VO\(_{2max}\) than standardized testing. Fourteen well-trained, male runners performed five incremental protocols in randomized order to measure their VO\(_{2max}\): i) an incremental test (INC\(_{S+I}\)) with pre-defined increases in speed (2 min at 8.64 km.h\(^{-1}\), then a rise of 1.44 km.h\(^{-1}\) every 30 s up to 14.4 km.h\(^{-1}\)) and thereafter inclination (0.5.every 30 s); ii) an incremental test (INC\(_{I}\)) at constant speed (14.4 km.h\(^{-1}\)) and increasing inclination (2 degrees every 2 min from the initial 0 degrees); iii) an incremental test (INC\(_{S}\)) at constant inclination (0 degrees) and increasing speed (0.5 km.h\(^{-1}\) every 30 s from the initial 12.0 km.h\(^{-1}\)); iv) a graded exercise protocol (GXP) at a 1 degrees incline with increasing speed (initially 8.64 km.h\(^{-1}\) + 1.44 km.h\(^{-1}\) every 5 min); v) an individual exercise protocol (INDXP) in which the runner chose the inclination and speed. VO\(_{2max}\) was lowest (-4.2\%) during the GXP (p = 0.01; d = 0.06 - 0.61) compared to all other tests. The highest rating of perceived exertion, heart rate, ventilation and end-exercise blood lactate concentration were similar between the different protocols (p < 0.05). The time to exhaustion ranged from 7 min 18 sec (INC\(_{S}\)) to 25 min 30 sec (GXP) (p = 0.01). The VO\(_{2max}\) attained by employing an individual treadmill protocol does not differ from the values derived from various standardized incremental protocols.}, language = {en} } @article{SperlichAchtzehndeMareesetal.2016, author = {Sperlich, Billy and Achtzehn, Silvia and de Mar{\´e}es, Markus and von Papen, Henning and Mester, Joachim}, title = {Load management in elite German distance runners during 3-weeks of high-altitude training}, series = {Physiological Reports}, volume = {4}, journal = {Physiological Reports}, number = {12}, doi = {10.14814/phy2.12845}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171294}, pages = {e12845}, year = {2016}, abstract = {There is a debate on the optimal way of monitoring training loads in elite endurance athletes especially during altitude training camps. In this case report, including nine members of the German national middle distance running team, we describe a practical approach to monitor the psychobiological stress markers during 21 days of altitude training (~2100 m above sea-level) to estimate the training load and to control muscle damage, fatigue, and/or chronic overreaching. Daily examination included: oxygen saturation of hemoglobin, resting heart rate, body mass, body and sleep perception, capillary blood concentration of creatine kinase. Every other day, venous serum concentration of blood urea nitrogen, venous blood concentration of hemoglobin, hematocrit, red and white blood cell were measured. If two or more of the above-mentioned stress markers were beyond or beneath the athlete's normal individual range, the training load of the subsequent training session was reduced. Running speed at 3 mmol L\(^{-1}\) blood lactate (V\(_{3}\)) improved and no athlete showed any signs of underperformance, chronic muscle damage, decrease body and sleep perception as well as activated inflammatory process during the 21 days. The dense screening of biomarkers in the present case study may stimulate further research to identify candidate markers for load monitoring in elite middle- and long-distance runners during a training camp at altitude.}, language = {en} } @article{KilianWehmeierWahletal.2016, author = {Kilian, Yvonne and Wehmeier, Udo F. and Wahl, Patrick and Mester, Joachim and Hilberg, Thomas and Sperlich, Billy}, title = {Acute Response of Circulating Vascular Regulating MicroRNAs during and after High-Intensity and High-Volume Cycling in Children}, series = {Frontiers in Physiology}, volume = {7}, journal = {Frontiers in Physiology}, number = {92}, doi = {10.3389/fphys.2016.00092}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165261}, year = {2016}, abstract = {Aim: The aim of the present study was to analyze the response of vascular circulating microRNAs (miRNAs; miR-16, miR-21, miR-126) and the VEGF mRNA following an acute bout of HIIT and HVT in children. Methods: Twelve healthy competitive young male cyclists (14.4 ± 0.8 years; 57.9 ± 9.4 ml•min-1•kg-1 peak oxygen uptake) performed one session of high intensity 4 × 4 min intervals (HIIT) at 90-95\% peak power output (PPO), each interval separated by 3 min of active recovery, and one high volume session (HVT) consisting of a constant load exercise for 90 min at 60\% PPO. Capillary blood from the earlobe was collected under resting conditions, during exercise (d1 = 20 min, d2 = 30 min, d3 = 60 min), and 0, 30, 60, 180 min after the exercise to determine miR-16, -21, -126, and VEGF mRNA. Results: HVT significantly increased miR-16 and miR-126 during and after the exercise compared to pre-values, whereas HIIT showed no significant influence on the miRNAs compared to pre-values. VEGF mRNA significantly increased during and after HIIT (d1, 30′, 60′, 180′) and HVT (d3, 0′, 60′). Conclusion: Results of the present investigation suggest a volume dependent exercise regulation of vascular regulating miRNAs (miR-16, miR-21, miR-126) in children. In line with previous data, our data show that acute exercise can alter circulating miRNAs profiles that might be used as novel biomarkers to monitor acute and chronic changes due to exercise in various tissues.}, language = {en} }