@article{WohlgemuthMiyazakiTsukadaetal.2017, author = {Wohlgemuth, Matthias and Miyazaki, Mitsuhiko and Tsukada, Kohei and Weiler, Martin and Dopfer, Otto and Fujii, Masaaki and Mitrić, Roland}, title = {Deciphering environment effects in peptide bond solvation dynamics by experiment and theory}, series = {Physical Chemistry Chemical Physics}, volume = {19}, journal = {Physical Chemistry Chemical Physics}, number = {33}, doi = {10.1039/C7CP03992A}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159647}, pages = {22564-22572}, year = {2017}, abstract = {Most proteins work in aqueous solution and the interaction with water strongly affects their structure and function. However, experimentally the motion of a specific single water molecule is difficult to trace by conventional methods, because they average over the heterogeneous solvation structure of bulk water surrounding the protein. Here, we provide a detailed atomistic picture of the water rearrangement dynamics around the -CONH- peptide linkage in the two model systems formanilide and acetanilide, which simply differ by the presence of a methyl group at the peptide linkage. The combination of picosecond pump-probe time-resolved infrared spectroscopy and molecular dynamics simulations demonstrates that the solvation dynamics at the molecular level is strongly influenced by this small structural difference. The effective timescales for solvent migration triggered by ionization are mainly controlled by the efficiency of the kinetic energy redistribution rather than the shape of the potential energy surface. This approach provides a fundamental understanding of protein hydration and may help to design functional molecules in solution with tailored properties.}, language = {en} } @unpublished{WohlgemuthMiyazakiTsukadaetal.2017, author = {Wohlgemuth, Matthias and Miyazaki, Mitsuhiko and Tsukada, Kohei and Weiler, Martin and Dopfer, Otto and Fujii, Masaaki and Mitrić, Roland}, title = {Deciphering environment effects in peptide bond solvation dynamics by experiment and theory}, series = {Physical Chemistry Chemical Physics}, journal = {Physical Chemistry Chemical Physics}, doi = {10.1039/C7CP03992A}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159483}, year = {2017}, abstract = {Most proteins work in aqueous solution and the interaction with water strongly affects their structure and function. However, experimentally the motion of a specific single water molecule is difficult to trace by conventional methods, because they average over the heterogeneous solvation structure of bulk water surrounding the protein. Here, we provide a detailed atomistic picture of the water rearrangement dynamics around the -CONH- peptide linkage in the two model systems formanilide and acetanilide, which simply differ by the presence of a methyl group at the peptide linkage. The combination of picosecond pump-probe time-resolved infrared spectroscopy and molecular dynamics simulations demonstrates that the solvation dynamics at the molecular level is strongly influenced by this small structural difference. The effective timescales for solvent migration triggered by ionization are mainly controlled by the efficiency of the kinetic energy redistribution rather than the shape of the potential energy surface. This approach provides a fundamental understanding of protein hydration and may help to design functional molecules in solution with tailored properties.}, language = {en} } @article{MezaChinchaLindnerSchindleretal.2020, author = {Meza-Chincha, Ana-Lucia and Lindner, Joachim O. and Schindler, Dorothee and Schmidt, David and Krause, Ana-Maria and R{\"o}hr, Merle I. S. and Mitrić, Roland and W{\"u}rthner, Frank}, title = {Impact of substituents on molecular properties and catalytic activities of trinuclear Ru macrocycles in water oxidation}, issn = {2041-6539}, doi = {10.1039/d0sc01097a}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204653}, year = {2020}, abstract = {Herein we report a broad series of new trinuclear supramolecular Ru(bda) macrocycles bearing different substituents at the axial or equatorial ligands which enabled investigation of substituent effects on the catalytic activities in chemical and photocatalytic water oxidation. Our detailed investigations revealed that the activities of these functionalized macrocycles in water oxidation are significantly affected by the position at which the substituents were introduced. Interestingly, this effect could not be explained based on the redox properties of the catalysts since these are not markedly influenced by the functionalization of the ligands. Instead, detailed investigations by X-ray crystal structure analysis and theoretical simulations showed that conformational changes imparted by the substituents are responsible for the variation of catalytic activities of the Ru macrocycles. For the first time, macrocyclic structure of this class of water oxidation catalysts is unequivocally confirmed and experimental indication for a hydrogen-bonded water network present in the cavity of the macrocycles is provided by crystal structure analysis. We ascribe the high catalytic efficiency of our Ru(bda) macrocycles to cooperative proton abstractions facilitated by such a network of preorganized water molecules in their cavity, which is reminiscent of catalytic activities of enzymes at active sites.}, language = {en} } @article{LisinetskayaRoehrMitrić2016, author = {Lisinetskaya, Polina and R{\"o}hr, Merle I. S. and Mitrić, Roland}, title = {First-principles simulation of light propagation and exciton dynamics in metal cluster nanostructures}, series = {Applied Physics B}, volume = {122}, journal = {Applied Physics B}, number = {6}, issn = {0946-2171}, doi = {10.1007/s00340-016-6436-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159193}, pages = {175}, year = {2016}, abstract = {We present a theoretical approach for the simulation of the electric field and exciton propagation in ordered arrays constructed of molecular-sized noble metal clusters bound to organic polymer templates. In order to describe the electronic coupling between individual constituents of the nanostructure we use the ab initio parameterized transition charge method which is more accurate than the usual dipole-dipole coupling. The electronic population dynamics in the nanostructure under an external laser pulse excitation is simulated by numerical integration of the time-dependent Schrodinger equation employing the fully coupled Hamiltonian. The solution of the TDSE gives rise to time-dependent partial point charges for each subunit of the nanostructure, and the spatio-temporal electric field distribution is evaluated by means of classical electrodynamics methods. The time-dependent partial charges are determined based on the stationary partial and transition charges obtained in the framework of the TDDFT. In order to treat large plasmonic nanostructures constructed of many constituents, the approximate self-consistent iterative approach presented in (Lisinetskaya and Mitric in Phys Rev B 89:035433, 2014) is modified to include the transition-charge-based interaction. The developed methods are used to study the optical response and exciton dynamics of Ag-3(+) and porphyrin-Ag-4 dimers. Subsequently, the spatio-temporal electric field distribution in a ring constructed of ten porphyrin-Ag-4 subunits under the action of circularly polarized laser pulse is simulated. The presented methodology provides a theoretical basis for the investigation of coupled light-exciton propagation in nanoarchitectures built from molecular size metal nanoclusters in which quantum confinement effects are important.}, language = {en} } @article{LisinetskayaBraunProchetal.2016, author = {Lisinetskaya, Polina and Braun, Christian and Proch, Sebastian and Kim, Young Dok and Gantef{\"o}r, Gerd and Mitrić, Roland}, title = {Excited state nonadiabatic dynamics of bare and hydrated anionic gold clusters Au\(^-_3\)[H\(_2\)O]\(_n\) (n=0-2)}, series = {Physical Chemistry Chemical Physics}, volume = {18}, journal = {Physical Chemistry Chemical Physics}, number = {9}, issn = {1463-9076}, doi = {10.1039/c5cp04297f}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159176}, pages = {6411-6419}, year = {2016}, abstract = {We present a joint theoretical and experimental study of excited state dynamics in pure and hydrated anionic gold clusters Au\(^-_3\)[H\(_2\)O]\(_n\) (n = 0-2). We employ mixed quantum-classical dynamics combined with femtosecond time-resolved photoelectron spectroscopy in order to investigate the influence of hydration on excited state lifetimes and photo-dissociation dynamics. A gradual decrease of the excited state lifetime with the number of adsorbed water molecules as well as gold cluster fragmentation quenching by two or more water molecules are observed both in experiment and in simulations. Non-radiative relaxation and dissociation in excited states are found to be responsible for the excited state population depletion. Time constants of these two processes strongly depend on the number of water molecules leading to the possibility to modulate excited state dynamics and fragmentation of the anionic cluster by adsorption of water molecules.}, language = {en} } @unpublished{HocheSchmittHumeniuketal.2017, author = {Hoche, Joscha and Schmitt, Hans-Christian and Humeniuk, Alexander and Fischer, Ingo and Mitrić, Roland and R{\"o}hr, Merle I. S.}, title = {The mechanism of excimer formation: an experimental and theoretical study on the pyrene dimer}, series = {Physical Chemistry Chemical Physics}, journal = {Physical Chemistry Chemical Physics}, doi = {10.1039/C7CP03990E}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159656}, year = {2017}, abstract = {The understanding of excimer formation in organic materials is of fundamental importance, since excimers profoundly influence their functional performance in applications such as light-harvesting, photovoltaics or organic electronics. We present a joint experimental and theoretical study of the ultrafast dynamics of excimer formation in the pyrene dimer in a supersonic jet, which is the archetype of an excimer forming system. We perform simulations of the nonadiabatic photodynamics in the frame of TDDFT that reveal two distinct excimer formation pathways in the gas-phase dimer. The first pathway involves local excited state relaxation close to the initial Franck-Condon geometry that is characterized by a strong excitation of the stacking coordinate exhibiting damped oscillations with a period of 350 fs that persist for several picoseconds. The second excimer forming pathway involves large amplitude oscillations along the parallel shift coordinate with a period of ≈900 fs that after intramolecular vibrational energy redistribution leads to the formation of a perfectly stacked dimer. The electronic relaxation within the excitonic manifold is mediated by the presence of intermolecular conical intersections formed between fully delocalized excitonic states. Such conical intersections may generally arise in stacked π-conjugated aggregates due to the interplay between the long-range and short-range electronic coupling. The simulations are supported by picosecond photoionization experiments in a supersonic jet that provide a time-constant for the excimer formation of around 6-7 ps, in good agreement with theory. Finally, in order to explore how the crystal environment influences the excimer formation dynamics we perform large scale QM/MM nonadiabatic dynamics simulations on a pyrene crystal in the framework of the long-range corrected tight-binding TDDFT. In contrast to the isolated dimer, the excimer formation in the crystal follows a single reaction pathway in which the initially excited parallel slip motion is strongly damped by the interaction with the surrounding molecules leading to the slow excimer stabilization on a picosecond time scale.}, language = {en} } @article{HocheSchmittHumeniuketal.2017, author = {Hoche, Joscha and Schmitt, Hans-Christian and Humeniuk, Alexander and Fischer, Ingo and Mitrić, Roland and R{\"o}hr, Merle I. S.}, title = {The mechanism of excimer formation: an experimental and theoretical study on the pyrene dimer}, series = {Physical Chemistry Chemical Physics}, volume = {19}, journal = {Physical Chemistry Chemical Physics}, number = {36}, doi = {10.1039/C7CP03990E}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159514}, pages = {25002-25015}, year = {2017}, abstract = {The understanding of excimer formation in organic materials is of fundamental importance, since excimers profoundly influence their functional performance in applications such as light-harvesting, photovoltaics or organic electronics. We present a joint experimental and theoretical study of the ultrafast dynamics of excimer formation in the pyrene dimer in a supersonic jet, which is the archetype of an excimer forming system. We perform simulations of the nonadiabatic photodynamics in the frame of TDDFT that reveal two distinct excimer formation pathways in the gas-phase dimer. The first pathway involves local excited state relaxation close to the initial Franck-Condon geometry that is characterized by a strong excitation of the stacking coordinate exhibiting damped oscillations with a period of 350 fs that persist for several picoseconds. The second excimer forming pathway involves large amplitude oscillations along the parallel shift coordinate with a period of ≈900 fs that after intramolecular vibrational energy redistribution leads to the formation of a perfectly stacked dimer. The electronic relaxation within the excitonic manifold is mediated by the presence of intermolecular conical intersections formed between fully delocalized excitonic states. Such conical intersections may generally arise in stacked π-conjugated aggregates due to the interplay between the long-range and short-range electronic coupling. The simulations are supported by picosecond photoionization experiments in a supersonic jet that provide a time-constant for the excimer formation of around 6-7 ps, in good agreement with theory. Finally, in order to explore how the crystal environment influences the excimer formation dynamics we perform large scale QM/MM nonadiabatic dynamics simulations on a pyrene crystal in the framework of the long-range corrected tight-binding TDDFT. In contrast to the isolated dimer, the excimer formation in the crystal follows a single reaction pathway in which the initially excited parallel slip motion is strongly damped by the interaction with the surrounding molecules leading to the slow excimer stabilization on a picosecond time scale.}, language = {en} }