@article{WilmsOverloeperNowrousianetal.2012, author = {Wilms, Ina and Overl{\"o}per, Aaron and Nowrousian, Minou and Sharma, Cynthia M. and Narberhaus, Franz}, title = {Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens}, series = {RNA Biology}, volume = {9}, journal = {RNA Biology}, number = {446-457}, doi = {10.4161/rna.17212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127101}, pages = {4}, year = {2012}, abstract = {Agrobacterium species are capable of interkingdom gene transfer between bacteria and plants. The genome of Agrobacterium tumefaciens consists of a circular and a linear chromosome, the At-plasmid and the Ti-plasmid, which harbors bacterial virulence genes required for tumor formation in plants. Little is known about promoter sequences and the small RNA (sRNA) repertoire of this and other α-proteobacteria. We used a differential RNA sequencing (dRNA-seq) approach to map transcriptional start sites of 388 annotated genes and operons. In addition, a total number of 228 sRNAs was revealed from all four Agrobacterium replicons. Twenty-two of these were confirmed by independent RNA gel blot analysis and several sRNAs were differentially expressed in response to growth media, growth phase, temperature or pH. One sRNA from the Ti-plasmid was massively induced under virulence conditions. The presence of 76 cis-antisense sRNAs, two of them on the reverse strand of virulence genes, suggests considerable antisense transcription in Agrobacterium. The information gained from this study provides a valuable reservoir for an in-depth understanding of sRNA-mediated regulation of the complex physiology and infection process of Agrobacterium.}, language = {en} } @article{RamachandranShearerJacobetal.2012, author = {Ramachandran, Vinoy K. and Shearer, Neil and Jacob, Jobin J. and Sharma, Cynthia M. and Thompson, Arthur}, title = {The architecture and ppGpp-dependent expression of the primary transcriptome of Salmonella Typhimurium during invasion gene expression}, series = {BMC Genomics}, volume = {13}, journal = {BMC Genomics}, number = {25}, doi = {10.1186/1471-2164-13-25}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130625}, year = {2012}, abstract = {Background: Invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium (S. Typhimurium) requires expression of the extracellular virulence gene expression programme (STEX), activation of which is dependent on the signalling molecule guanosine tetraphosphate (ppGpp). Recently, next-generation transcriptomics (RNA-seq) has revealed the unexpected complexity of bacterial transcriptomes and in this report we use differential RNA sequencing (dRNA-seq) to define the high-resolution transcriptomic architecture of wildtype S. Typhimurium and a ppGpp null strain under growth conditions which model STEX. In doing so we show that ppGpp plays a much wider role in regulating the S. Typhimurium STEX primary transcriptome than previously recognised. Results: Here we report the precise mapping of transcriptional start sites (TSSs) for 78\% of the S. Typhimurium open reading frames (ORFs). The TSS mapping enabled a genome-wide promoter analysis resulting in the prediction of 169 alternative sigma factor binding sites, and the prediction of the structure of 625 operons. We also report the discovery of 55 new candidate small RNAs (sRNAs) and 302 candidate antisense RNAs (asRNAs). We discovered 32 ppGpp-dependent alternative TSSs and determined the extent and level of ppGpp-dependent coding and non-coding transcription. We found that 34\% and 20\% of coding and non-coding RNA transcription respectively was ppGpp-dependent under these growth conditions, adding a further dimension to the role of this remarkable small regulatory molecule in enabling rapid adaptation to the infective environment. Conclusions: The transcriptional architecture of S. Typhimurium and finer definition of the key role ppGpp plays in regulating Salmonella coding and non-coding transcription should promote the understanding of gene regulation in this important food borne pathogen and act as a resource for future research.}, language = {en} } @article{PernitzschSharma2012, author = {Pernitzsch, Sandy R. and Sharma, Cynthia M.}, title = {Transcriptome Complexity and Riboregulation in the Human Pathogen Helicobacter pylori}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75096}, year = {2012}, subject = {Medizin}, language = {en} } @article{LioliouSharmaCaldelarietal.2012, author = {Lioliou, Efthimia and Sharma, Cynthia M. and Caldelari, Isabelle and Helfer, Anne-Catherine and Fechter, Pierre and Vandenesch, Fran{\c{c}}ois and Vogel, J{\"o}rg and Romby, Pascale}, title = {Global Regulatory Functions of the Staphylococcus aureus Endoribonuclease III in Gene Expression}, series = {PLoS Genetics}, volume = {8}, journal = {PLoS Genetics}, number = {6}, doi = {10.1371/journal.pgen.1002782}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127219}, pages = {e1002782}, year = {2012}, abstract = {RNA turnover plays an important role in both virulence and adaptation to stress in the Gram-positive human pathogen Staphylococcus aureus. However, the molecular players and mechanisms involved in these processes are poorly understood. Here, we explored the functions of S. aureus endoribonuclease III (RNase III), a member of the ubiquitous family of double-strand-specific endoribonucleases. To define genomic transcripts that are bound and processed by RNase III, we performed deep sequencing on cDNA libraries generated from RNAs that were co-immunoprecipitated with wild-type RNase III or two different cleavage-defective mutant variants in vivo. Several newly identified RNase III targets were validated by independent experimental methods. We identified various classes of structured RNAs as RNase III substrates and demonstrated that this enzyme is involved in the maturation of rRNAs and tRNAs, regulates the turnover of mRNAs and non-coding RNAs, and autoregulates its synthesis by cleaving within the coding region of its own mRNA. Moreover, we identified a positive effect of RNase III on protein synthesis based on novel mechanisms. RNase III-mediated cleavage in the 5′ untranslated region (5′UTR) enhanced the stability and translation of cspA mRNA, which encodes the major cold-shock protein. Furthermore, RNase III cleaved overlapping 5′UTRs of divergently transcribed genes to generate leaderless mRNAs, which constitutes a novel way to co-regulate neighboring genes. In agreement with recent findings, low abundance antisense RNAs covering 44\% of the annotated genes were captured by co-immunoprecipitation with RNase III mutant proteins. Thus, in addition to gene regulation, RNase III is associated with RNA quality control of pervasive transcription. Overall, this study illustrates the complexity of post-transcriptional regulation mediated by RNase III.}, language = {en} } @article{JaegerPernitzschRichteretal.2012, author = {J{\"a}ger, Dominik and Pernitzsch, Sandy R. and Richter, Andreas S. and Backofen, Rolf and Sharma, Cynthia M. and Schmitz, Ruth A.}, title = {An archaeal sRNA targeting cis- and trans-encoded mRNAs via two distinct domains}, series = {Nucleic Acids Research}, volume = {40}, journal = {Nucleic Acids Research}, number = {21}, doi = {10.1093/nar/gks847}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134972}, pages = {10964-10979}, year = {2012}, abstract = {We report on the characterization and target analysis of the small (s) RNA\(_{162}\) in the methanoarchaeon Methanosarcina mazei. Using a combination of genetic approaches, transcriptome analysis and computational predictions, the bicistronic MM2441-MM2440 mRNA encoding the transcription factor MM2441 and a protein of unknown function was identified as a potential target of this sRNA, which due to processing accumulates as three stabile 5' fragments in late exponential growth. Mobility shift assays using various mutants verified that the non-structured single-stranded linker region of sRNA\(_{162}\) (SLR) base-pairs with the MM2440-MM2441 mRNA internally, thereby masking the predicted ribosome binding site of MM2441. This most likely leads to translational repression of the second cistron resulting in dis-coordinated operon expression. Analysis of mutant RNAs in vivo confirmed that the SLR of sRNA\(_{162}\) is crucial for target interactions. Furthermore, our results indicate that sRNA\(_{162}\)-controlled MM2441 is involved in regulating the metabolic switch between the carbon sources methanol and methylamine. Moreover, biochemical studies demonstrated that the 50 end of sRNA\(_{162}\) targets the 5'-untranslated region of the cis-encoded MM2442 mRNA. Overall, this first study of archaeal sRNA/mRNA-target interactions unraveled that sRNA\(_{162}\) acts as an antisense (as) RNA on cis- and trans-encoded mRNAs via two distinct domains, indicating that cis-encoded asRNAs can have larger target regulons than previously anticipated.}, language = {en} }