@article{HerterStauchGallantetal.2015, author = {Herter, Eva K. and Stauch, Maria and Gallant, Maria and Wolf, Elmar and Raabe, Thomas and Gallant, Peter}, title = {snoRNAs are a novel class of biologically relevant Myc targets}, series = {BMC Biology}, volume = {13}, journal = {BMC Biology}, number = {25}, doi = {10.1186/s12915-015-0132-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124956}, year = {2015}, abstract = {Background Myc proteins are essential regulators of animal growth during normal development, and their deregulation is one of the main driving factors of human malignancies. They function as transcription factors that (in vertebrates) control many growth- and proliferation-associated genes, and in some contexts contribute to global gene regulation. Results We combine chromatin immunoprecipitation-sequencing (ChIPseq) and RNAseq approaches in Drosophila tissue culture cells to identify a core set of less than 500 Myc target genes, whose salient function resides in the control of ribosome biogenesis. Among these genes we find the non-coding snoRNA genes as a large novel class of Myc targets. All assayed snoRNAs are affected by Myc, and many of them are subject to direct transcriptional activation by Myc, both in Drosophila and in vertebrates. The loss of snoRNAs impairs growth during normal development, whereas their overexpression increases tumor mass in a model for neuronal tumors. Conclusions This work shows that Myc acts as a master regulator of snoRNP biogenesis. In addition, in combination with recent observations of snoRNA involvement in human cancer, it raises the possibility that Myc's transforming effects are partially mediated by this class of non-coding transcripts.}, language = {en} } @article{BeckEhmannAndlaueretal.2015, author = {Beck, Katherina and Ehmann, Nadine and Andlauer, Till F. M. and Ljaschenko, Dmitrij and Strecker, Katrin and Fischer, Matthias and Kittel, Robert J. and Raabe, Thomas}, title = {Loss of the Coffin-Lowry syndrome-associated gene RSK2 alters ERK activity, synaptic function and axonal transport in Drosophila motoneurons}, series = {Disease Models \& Mechanisms}, volume = {8}, journal = {Disease Models \& Mechanisms}, doi = {10.1242/dmm.021246}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145185}, pages = {1389-1400}, year = {2015}, abstract = {Plastic changes in synaptic properties are considered as fundamental for adaptive behaviors. Extracellular-signal-regulated kinase (ERK)-mediated signaling has been implicated in regulation of synaptic plasticity. Ribosomal S6 kinase 2 (RSK2) acts as a regulator and downstream effector of ERK. In the brain, RSK2 is predominantly expressed in regions required for learning and memory. Loss-of-function mutations in human RSK2 cause Coffin-Lowry syndrome, which is characterized by severe mental retardation and low IQ scores in affected males. Knockout of RSK2 in mice or the RSK ortholog in Drosophila results in a variety of learning and memory defects. However, overall brain structure in these animals is not affected, leaving open the question of the pathophysiological consequences. Using the fly neuromuscular system as a model for excitatory glutamatergic synapses, we show that removal of RSK function causes distinct defects in motoneurons and at the neuromuscular junction. Based on histochemical and electrophysiological analyses, we conclude that RSK is required for normal synaptic morphology and function. Furthermore, loss of RSK function interferes with ERK signaling at different levels. Elevated ERK activity was evident in the somata of motoneurons, whereas decreased ERK activity was observed in axons and the presynapse. In addition, we uncovered a novel function of RSK in anterograde axonal transport. Our results emphasize the importance of fine-tuning ERK activity in neuronal processes underlying higher brain functions. In this context, RSK acts as a modulator of ERK signaling.}, language = {en} }