@article{LeeLimSchneideretal.2015, author = {Lee, Chang-Min and Lim, Hee-Jin and Schneider, Christian and Maier, Sebastian and H{\"o}fling, Sven and Kamp, Martin and Lee, Yong-Hee}, title = {Efficient single photon source based on \(\mu\)-fibre-coupled tunable microcavity}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {14309}, doi = {10.1038/srep14309}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145835}, year = {2015}, abstract = {Efficient and fast on-demand single photon sources have been sought after as critical components of quantum information science. We report an efficient and tunable single photon source based on an InAs quantum dot (QD) embedded in a photonic crystal cavity coupled with a highly curved \(\mu\)-fibre. Exploiting evanescent coupling between the \(\mu\)-fibre and the cavity, a high collection efficiency of 23\% and Purcell-enhanced spontaneous emissions are observed. In our scheme, the spectral position of a resonance can be tuned by as much as 1.5 nm by adjusting the contact position of the \(\mu\)-fibre, which increases the spectral coupling probability between the QD and the cavity mode. Taking advantage of the high photon count rate and the tunability, the collection efficiencies and the decay rates are systematically investigated as a function of the QD-cavity detuning.}, language = {en} } @article{KochereshkoDurnevBesombesetal.2016, author = {Kochereshko, Vladimir P. and Durnev, Mikhail V. and Besombes, Lucien and Mariette, Henri and Sapega, Victor F. and Askitopoulos, Alexis and Savenko, Ivan G. and Liew, Timothy C. H. and Shelykh, Ivan A. and Platonov, Alexey V. and Tsintzos, Simeon I. and Hatzopoulos, Z. and Savvidis, Pavlos G. and Kalevich, Vladimir K. and Afanasiev, Mikhail M. and Lukoshkin, Vladimir A. and Schneider, Christian and Amthor, Matthias and Metzger, Christian and Kamp, Martin and Hoefling, Sven and Lagoudakis, Pavlos and Kavokin, Alexey}, title = {Lasing in Bose-Fermi mixtures}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {20091}, doi = {10.1038/srep20091}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168152}, year = {2016}, abstract = {Light amplification by stimulated emission of radiation, well-known for revolutionising photonic science, has been realised primarily in fermionic systems including widely applied diode lasers. The prerequisite for fermionic lasing is the inversion of electronic population, which governs the lasing threshold. More recently, bosonic lasers have also been developed based on Bose-Einstein condensates of exciton-polaritons in semiconductor microcavities. These electrically neutral bosons coexist with charged electrons and holes. In the presence of magnetic fields, the charged particles are bound to their cyclotron orbits, while the neutral exciton-polaritons move freely. We demonstrate how magnetic fields affect dramatically the phase diagram of mixed Bose-Fermi systems, switching between fermionic lasing, incoherent emission and bosonic lasing regimes in planar and pillar microcavities with optical and electrical pumping. We collected and analyzed the data taken on pillar and planar microcavity structures at continuous wave and pulsed optical excitation as well as injecting electrons and holes electronically. Our results evidence the transition from a Bose gas to a Fermi liquid mediated by magnetic fields and light-matter coupling.}, language = {en} } @article{KimZhangWangetal.2016, author = {Kim, Seonghoon and Zhang, Bo and Wang, Zhaorong and Fischer, Julian and Brodbeck, Sebastian and Kamp, Martin and Schneider, Christian and H{\"o}fling, Sven and Deng, Hui}, title = {Coherent Polariton Laser}, series = {Physical Review X}, volume = {6}, journal = {Physical Review X}, number = {011026}, doi = {10.1103/PhysRevX.6.011026}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166597}, year = {2016}, abstract = {The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.}, language = {en} } @article{JahnkeGiesAssmannetal.2016, author = {Jahnke, Frank and Gies, Christopher and Aßmann, Marc and Bayer, Manfred and Leymann, H.A.M. and Foerster, Alexander and Wiersig, Jan and Schneider, Christian and Kamp, Martin and H{\"o}fling, Sven}, title = {Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, number = {11540}, doi = {10.1038/ncomms11540}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166144}, year = {2016}, abstract = {Light is often characterized only by its classical properties, like intensity or coherence. When looking at its quantum properties, described by photon correlations, new information about the state of the matter generating the radiation can be revealed. In particular the difference between independent and entangled emitters, which is at the heart of quantum mechanics, can be made visible in the photon statistics of the emitted light. The well-studied phenomenon of superradiance occurs when quantum-mechanical correlations between the emitters are present. Notwithstanding, superradiance was previously demonstrated only in terms of classical light properties. Here, we provide the missing link between quantum correlations of the active material and photon correlations in the emitted radiation. We use the superradiance of quantum dots in a cavity-quantum electrodynamics laser to show a direct connection between superradiant pulse emission and distinctive changes in the photon correlation function. This directly demonstrates the importance of quantum-mechanical correlations and their transfer between carriers and photons in novel optoelectronic devices.}, language = {en} } @article{HeIffLundtetal.2016, author = {He, Yu-Ming and Iff, Oliver and Lundt, Nils and Baumann, Vasilij and Davanco, Marcelo and Srinivasan, Kartik and H{\"o}fling, Sven and Schneider, Christian}, title = {Cascaded emission of single photons from the biexciton in monolayered WSe\(_{2}\)}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms13409}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169363}, year = {2016}, abstract = {Monolayers of transition metal dichalcogenide materials emerged as a new material class to study excitonic effects in solid state, as they benefit from enormous Coulomb correlations between electrons and holes. Especially in WSe\(_{2}\), sharp emission features have been observed at cryogenic temperatures, which act as single photon sources. Tight exciton localization has been assumed to induce an anharmonic excitation spectrum; however, the evidence of the hypothesis, namely the demonstration of a localized biexciton, is elusive. Here we unambiguously demonstrate the existence of a localized biexciton in a monolayer of WSe\(_{2}\), which triggers an emission cascade of single photons. The biexciton is identified by its time-resolved photoluminescence, superlinearity and distinct polarization in micro-photoluminescence experiments. We evidence the cascaded nature of the emission process in a cross-correlation experiment, which yields a strong bunching behaviour. Our work paves the way to a new generation of quantum optics experiments with two-dimensional semiconductors.}, language = {en} } @article{AmthorWeissenseelFischeretal.2014, author = {Amthor, Matthias and Weißenseel, Sebastian and Fischer, Julian and Kamp, Martin and Schneider, Christian and H{\"o}fling, Sven}, title = {Electro-optical switching between polariton and cavity lasing in an InGaAs quantum well microcavity}, doi = {10.1364/OE.22.031146}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111130}, year = {2014}, abstract = {We report on the condensation of microcavity exciton polaritons under optical excitation in a microcavity with four embedded InGaAs quantum wells. The polariton laser is characterized by a distinct nonlinearity in the input-output-characteristics, which is accompanied by a drop of the emission linewidth indicating temporal coherence and a characteristic persisting emission blueshift with increased particle density. The temporal coherence of the device at threshold is underlined by a characteristic drop of the second order coherence function to a value close to 1. Furthermore an external electric field is used to switch between polariton regime, polariton condensate and photon lasing.}, language = {en} } @article{AeschlimannBauerBayeretal.2012, author = {Aeschlimann, Martin and Bauer, Michael and Bayer, Daniela and Brixner, Tobias and Cunovic, Stefan and Fischer, Alexander and Melchior, Pascal and Pfeiffer, Walter and Rohmer, Martin and Schneider, Christian and Str{\"u}ber, Christian and Tuchscherer, Philip and Voronine, Dimitri V.}, title = {Optimal open-loop near-field control of plasmonic nanostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75256}, year = {2012}, abstract = {Optimal open-loop control, i.e. the application of an analytically derived control rule, is demonstrated for nanooptical excitations using polarization-shaped laser pulses. Optimal spatial near-field localization in gold nanoprisms and excitation switching is realized by applying a shift to the relative phase of the two polarization components. The achieved near-field switching confirms theoretical predictions, proves the applicability of predefined control rules in nanooptical light-matter interaction and reveals local mode interference to be an important control mechanism.}, subject = {Chemie}, language = {en} }