@article{BellingerAltenmuellerVolkmann2017, author = {Bellinger, Daniel and Altenm{\"u}ller, Eckart and Volkmann, Jens}, title = {Perception of time in music in patients with Parkinson's disease - The processing of musical syntax compensates for rhythmic deficits}, series = {Frontiers in Neuroscience}, volume = {11}, journal = {Frontiers in Neuroscience}, doi = {10.3389/fnins.2017.00068}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171805}, year = {2017}, abstract = {Objective: Perception of time as well as rhythm in musical structures rely on complex brain mechanisms and require an extended network of multiple neural sources. They are therefore sensitive to impairment. Several psychophysical studies have shown that patients with Parkinson's disease (PD) have deficits in perceiving time and rhythms due to a malfunction of the basal ganglia (BG) network. Method: In this study we investigated the time perception of PD patients during music perception by assessing their just noticeable difference (JND) in the time perception of a complex musical Gestalt. We applied a temporal discrimination task using a short melody with a clear beat-based rhythm. Among the subjects, 26 patients under L-Dopa administration and 21 age-matched controls had to detect an artificially delayed time interval in the range between 80 and 300 ms in the middle of the musical period. We analyzed the data by (a) calculating the detection threshold directly, (b) by extrapolating the JNDs, (c) relating it to musical expertise. Results: Patients differed from controls in the detection of time-intervals between 220 and 300 ms (*p = 0.0200, n = 47). Furthermore, this deficit depended on the severity of the disease (*p = 0.0452; n = 47). Surprisingly, PD patients did not show any deficit of their JND compared to healthy controls, although the results showed a trend (*p = 0.0565, n = 40). Furthermore, no significant difference of the JND was found according to the severity of the disease. Additionally, musically trained persons seemed to have lower thresholds in detecting deviations in time and syntactic structures of music (*p = 0.0343, n = 39). Conclusion: As an explanation of these results, we would like to propose the hypothesis of a time-syntax-congruency in music perception suggesting that processing of time and rhythm is a Gestalt process and that cortical areas involved in processing of musical syntax may compensate for impaired BG circuits that are responsible for time processing and rhythm perception. This mechanism may emerge more strongly as the deficits in time processing and rhythm perception progress. Furthermore, we presume that top-down-bottom-up-processes interfere additionally and interact in this context of compensation.}, language = {en} } @article{BellingerWehrmannRohdeetal.2023, author = {Bellinger, Daniel and Wehrmann, Kristin and Rohde, Anna and Schuppert, Maria and St{\"o}rk, Stefan and Flohr-Jost, Michael and Gall, Dominik and Pauli, Paul and Deckert, J{\"u}rgen and Herrmann, Martin J. and Erhardt-Lehmann, Angelika}, title = {The application of virtual reality exposure versus relaxation training in music performance anxiety: a randomized controlled study}, series = {BMC Psychiatry}, volume = {23}, journal = {BMC Psychiatry}, doi = {10.1186/s12888-023-05040-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357833}, year = {2023}, abstract = {Background Performance anxiety is the most frequently reported anxiety disorder among professional musicians. Typical symptoms are - on a physical level - the consequences of an increase in sympathetic tone with cardiac stress, such as acceleration of heartbeat, increase in blood pressure, increased respiratory rate and tremor up to nausea or flush reactions. These symptoms can cause emotional distress, a reduced musical and artistical performance up to an impaired functioning. While anxiety disorders are preferably treated using cognitive-behavioral therapy with exposure, this approach is rather difficult for treating music performance anxiety since the presence of a public or professional jury is required and not easily available. The use of virtual reality (VR) could therefore display an alternative. So far, no therapy studies on music performance anxiety applying virtual reality exposure therapy have investigated the therapy outcome including cardiovascular changes as outcome parameters. Methods This mono-center, prospective, randomized and controlled clinical trial has a pre-post design with a follow-up period of 6 months. 46 professional and semi-professional musicians will be recruited and allocated randomly to an VR exposure group or a control group receiving progressive muscle relaxation training. Both groups will be treated over 4 single sessions. Music performance anxiety will be diagnosed based on a clinical interview using ICD-10 and DSM-5 criteria for specific phobia or social anxiety. A behavioral assessment test is conducted three times (pre, post, follow-up) in VR through an audition in a concert hall. Primary outcomes are the changes in music performance anxiety measured by the German B{\"u}hnenangstfragebogen and the cardiovascular reactivity reflected by heart rate variability (HRV). Secondary outcomes are changes in blood pressure, stress parameters such as cortisol in the blood and saliva, neuropeptides, and DNA-methylation. Discussion The trial investigates the effect of VR exposure in musicians with performance anxiety compared to a relaxation technique on anxiety symptoms and corresponding cardiovascular parameters. We expect a reduction of anxiety but also a consecutive improvement of HRV with cardiovascular protective effects. Trial registration This study was registered on clinicaltrials.gov. (ClinicalTrials.gov Number: NCT05735860)}, language = {en} }