@article{PolidoriBallesterosWurdacketal.2020, author = {Polidori, Carlo and Ballesteros, Yolanda and Wurdack, Mareike and As{\´i}s, Josep Daniel and Tormos, Jos{\´e} and Ba{\~n}os-Pic{\´o}n, Laura and Schmitt, Thomas}, title = {Low host specialization in the cuckoo wasp, Parnopes grandior, weakens chemical mimicry but does not lead to local adaption}, series = {Insects}, volume = {11}, journal = {Insects}, number = {2}, issn = {2075-4450}, doi = {10.3390/insects11020136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200651}, year = {2020}, abstract = {Insect brood parasites have evolved a variety of strategies to avoid being detected by their hosts. Few previous studies on cuckoo wasps (Hymenoptera: Chrysididae), which are natural enemies of solitary wasps and bees, have shown that chemical mimicry, i.e., the biosynthesis of cuticular hydrocarbons (CHC) that match the host profile, evolved in several species. However, mimicry was not detected in all investigated host-parasite pairs. The effect of host range as a second factor that may play a role in evolution of mimicry has been neglected, since all previous studies were carried out on host specialists and at nesting sites where only one host species occurred. Here we studied the cuckoo wasp Parnopes grandior, which attacks many digger wasp species of the genus Bembix (Hymenoptera: Crabronidae). Given its weak host specialization, P. grandior may either locally adapt by increasing mimicry precision to only one of the sympatric hosts or it may evolve chemical insignificance by reducing the CHC profile complexity and/or CHCs amounts. At a study site harbouring three host species, we found evidence for a weak but appreciable chemical deception strategy in P. grandior. Indeed, the CHC profile of P. grandior was more similar to all sympatric Bembix species than to a non-host wasp species belonging to the same tribe as Bembix. Furthermore, P. grandior CHC profile was equally distant to all the hosts' CHC profiles, thus not pointing towards local adaptation of the CHC profile to one of the hosts' profile. We conducted behavioural assays suggesting that such weak mimicry is sufficient to reduce host aggression, even in absence of an insignificance strategy, which was not detected. Hence, we finally concluded that host range may indeed play a role in shaping the level of chemical mimicry in cuckoo wasps.}, language = {en} } @article{CastilloWurdackPaulietal.2022, author = {Castillo, Ruth and Wurdack, Mareike and Pauli, Thomas and Keller, Alexander and Feldhaar, Heike and Polidori, Carlo and Niehuis, Oliver and Schmitt, Thomas}, title = {Evidence for a chemical arms race between cuckoo wasps of the genus Hedychrum and their distantly related host apoid wasps}, series = {BMC Ecology and Evolution}, volume = {22}, journal = {BMC Ecology and Evolution}, number = {1}, doi = {10.1186/s12862-022-02093-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301289}, year = {2022}, abstract = {Background Brood parasites can exert strong selection pressure on their hosts. Many brood parasites escape their detection by mimicking sensory cues of their hosts. However, there is little evidence whether or not the hosts are able to escape the parasites' mimicry by changing these cues. We addressed this question by analyzing cuticular hydrocarbon (CHC) profiles of Cerceris and Philanthus wasps and their brood parasites, cuckoo wasps mimicking the CHC profiles of their hosts. Some of these hosts use hydrocarbons to preserve their prey against fungal infestation and thus, they cannot significantly change their CHC composition in response to chemical mimicry by Hedychrum brood parasites. Results We found that the CHC overlap between brood parasites and their hosts was lower in case of host wasps not preserving their prey than in case of prey-preserving host wasps, whose CHC evolution is constrained. Furthermore, the CHC profiles in non-preserving host wasps is more strongly diversified in females than in males, thus in the sex that is chemically mimicked by brood parasites. Conclusion Our results provide evidence for a chemical arms race between those hosts that are liberated from stabilizing selection on their chemical template and their parasites.}, language = {en} }