@article{ZadehKhorasaniNolteMuelleretal.2013, author = {Zadeh-Khorasani, Maryam and Nolte, Thomas and Mueller, Thomas D. and Pechlivanis, Markos and Rueff, Franziska and Wollenberg, Andreas and Fricker, Gert and Wolf, Eckhard and Siebeck, Matthias and Gropp, Roswitha}, title = {NOD-scid IL2R \(\gamma^{null}\) mice engrafted with human peripheral blood mononuclear cells as a model to test therapeutics targeting human signaling pathways}, series = {Journal of Translational Medicine}, volume = {11}, journal = {Journal of Translational Medicine}, number = {4}, issn = {1479-5876}, doi = {10.1186/1479-5876-11-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122960}, year = {2013}, abstract = {Background: Animal models of human inflammatory diseases have limited predictive quality for human clinical trials for various reasons including species specific activation mechanisms and the immunological background of the animals which markedly differs from the genetically heterogeneous and often aged patient population. Objective: Development of an animal model allowing for testing therapeutics targeting pathways involved in the development of Atopic Dermatitis (AD) with better translatability to the patient. Methods: NOD-scid IL2R \(\gamma^{null}\) mice engrafted with human peripheral blood mononuclear cells (hPBMC) derived from patients suffering from AD and healthy volunteers were treated with IL-4 and the antagonistic IL-4 variant R121/Y124D (Pitrakinra). Levels of human (h) IgE, amount of B-, T- and plasma-cells and ratio of CD4 : CD8 positive cells served as read out for induction and inhibition of cell proliferation and hIgE secretion. Results were compared to in vitro analysis. Results: hIgE secretion was induced by IL-4 and inhibited by the IL-4 antagonist Pitrakinra in vivo when formulated with methylcellulose. B-cells proliferated in response to IL-4 in vivo; the effect was abrogated by Pitrakinra. IL-4 shifted CD4 : CD8 ratios in vitro and in vivo when hPBMC derived from healthy volunteers were used. Pitrakinra reversed the effect. Human PBMC derived from patients with AD remained inert and engrafted mice reflected the individual responses observed in vitro. Conclusion: NOD-scid IL2R \(\gamma^{null}\) mice engrafted with human PBMC reflect the immunological history of the donors and provide a complementary tool to in vitro studies. Thus, studies in this model might provide data with better translatability from bench to bedside.}, language = {en} } @article{NolteZadehKhorasaniSafarovetal.2013, author = {Nolte, Thomas and Zadeh-Khorasani, Maryam and Safarov, Orkhan and Rueff, Franziska and Varga, Rita and Herbach, Nadja and Wanke, R{\"u}diger and Wollenberg, Andreas and Mueller, Thomas and Gropp, Roswitha and Wolf, Eckhard and Siebeck, Matthias}, title = {Induction of oxazolone-mediated features of atopic dermatitis in NOD-scid IL2R \(γ^{null}\) mice engrafted with human peripheral blood mononuclear cells}, series = {Disease Models \& Mechanisms}, volume = {6}, journal = {Disease Models \& Mechanisms}, doi = {10.1242/dmm.009167}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122189}, pages = {125-134}, year = {2013}, abstract = {Animal models mimicking human diseases have been used extensively to study the pathogenesis of autoimmune diseases and the efficacy of potential therapeutics. They are, however, limited with regard to their similarity to the human disease and cannot be used if the antagonist and its cognate receptor require high similarity in structure or binding. Here, we examine the induction of oxazolone-mediated features of atopic dermatitis (AD) in NOD-scid IL2R \(γ^{null}\) mice engrafted with human peripheral blood mononuclear cells (PBMC). The mice developed the same symptoms as immunocompetent BALB/c mice. Histological alterations induced by oxazolone were characterized by keratosis, epithelial hyperplasia and influx of inflammatory cells into the dermis and epidermis. The cellular infiltrate was identified as human leukocytes, with T cells being the major constituent. In addition, oxazolone increased human serum IgE levels. The response, however, required the engraftment of PBMC derived from patients suffering from AD, which suggests that this model reflects the immunological status of the donor. Taken together, the model described here has the potential to evaluate the efficacy of therapeutics targeting human lymphocytes in vivo and, in addition, might be developed further to elucidate molecular mechanisms inducing and sustaining flares of the disease.}, language = {en} } @article{NolteZadehKhorasaniSafarovetal.2012, author = {Nolte, Thomas and Zadeh-Khorasani, Maryam and Safarov, Orkhan and Rueff, Franziska and Varga, Rita and Herbach, Nadja and Wanke, R{\"u}diger and Wollenberg, Andreas and Mueller, Thomas and Gropp, Roswitha and Wolf, Eckhard and Siebeck, Matthias}, title = {Induction of oxazolone-mediated features of atopic dermatitis in NOD-scid \(IL2Rγ^{null}\) mice engrafted with human peripheral blood mononuclear cells}, series = {Disease Models and Mechanisms}, volume = {6}, journal = {Disease Models and Mechanisms}, doi = {10.1242/dmm.009167}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124150}, pages = {125-134}, year = {2012}, abstract = {Animal models mimicking human diseases have been used extensively to study the pathogenesis of autoimmune diseases and the efficacy of potential therapeutics. They are, however, limited with regard to their similarity to the human disease and cannot be used if the antagonist and its cognate receptor require high similarity in structure or binding. Here, we examine the induction of oxazolone-mediated features of atopic dermatitis (AD) in NOD-scid IL2Rγnull mice engrafted with human peripheral blood mononuclear cells (PBMC). The mice developed the same symptoms as immunocompetent BALB/c mice. Histological alterations induced by oxazolone were characterized by keratosis, epithelial hyperplasia and influx of inflammatory cells into the dermis and epidermis. The cellular infiltrate was identified as human leukocytes, with T cells being the major constituent. In addition, oxazolone increased human serum IgE levels. The response, however, required the engraftment of PBMC derived from patients suffering from AD, which suggests that this model reflects the immunological status of the donor. Taken together, the model described here has the potential to evaluate the efficacy of therapeutics targeting human lymphocytes in vivo and, in addition, might be developed further to elucidate molecular mechanisms inducing and sustaining flares of the disease.}, language = {en} } @article{SimonRauskolbGunnersenetal.2015, author = {Simon, Christian M. and Rauskolb, Stefanie and Gunnersen, Jennifer M. and Holtmann, Bettina and Drepper, Carsten and Dombert, Benjamin and Braga, Massimiliano and Wiese, Stefan and Jablonka, Sibylle and P{\"u}hringer, Dirk and Zielasek, J{\"u}rgen and Hoeflich, Andreas and Silani, Vincenzo and Wolf, Eckhard and Kneitz, Susanne and Sommer, Claudia and Toyka, Klaus V. and Sendtner, Michael}, title = {Dysregulated IGFBP5 expression causes axon degeneration and motoneuron loss in diabetic neuropathy}, series = {Acta Neuropathologica}, volume = {130}, journal = {Acta Neuropathologica}, doi = {10.1007/s00401-015-1446-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154569}, pages = {373 -- 387}, year = {2015}, abstract = {Diabetic neuropathy (DNP), afflicting sensory and motor nerve fibers, is a major complication in diabetes.The underlying cellular mechanisms of axon degeneration are poorly understood. IGFBP5, an inhibitory binding protein for insulin-like growth factor 1 (IGF1) is highly up-regulated in nerve biopsies of patients with DNP. We investigated the pathogenic relevance of this finding in transgenic mice overexpressing IGFBP5 in motor axons and sensory nerve fibers. These mice develop motor axonopathy and sensory deficits similar to those seen in DNP. Motor axon degeneration was also observed in mice in which the IGF1 receptor(IGF1R) was conditionally depleted in motoneurons, indicating that reduced activity of IGF1 on IGF1R in motoneurons is responsible for the observed effect. These data provide evidence that elevated expression of IGFBP5 in diabetic nerves reduces the availability of IGF1 for IGF1R on motor axons, thus leading to progressive neurodegeneration. Inhibition of IGFBP5 could thus offer novel treatment strategies for DNP.}, language = {en} } @article{MasuWolfHoltmannetal.1993, author = {Masu, Yasuo and Wolf, Eckhard and Holtmann, Bettina and Sendtner, Michael and Brem, Gottfried and Thoenen, Hans}, title = {Disruption of the CNTF gene results in motor neuron degeneration}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33038}, year = {1993}, abstract = {CNTF is a cytosolic molecule expressed postnatally in myelinating Schwann cells and in a subpopulation of astrocytes. Although CNTF administration prevents lesion-mediated and genetically determined motor neuron degeneration, its physiological function remained elusive. Here it is reported that abolition of CNTF gene expression by homologous recombination results in a progressive atrophy and loss of motor neurons in adult mice, which is functionally reflected by a small but significant reduction in muscle strength.}, language = {en} } @article{JodeleitPalamidesBeigeletal.2017, author = {Jodeleit, Henrika and Palamides, Pia and Beigel, Florian and Mueller, Thomas and Wolf, Eckhard and Siebeck, Matthias and Gropp, Roswitha}, title = {Design and validation of a disease network of inflammatory processes in the NSG-UC mouse model}, series = {Journal of Translational Medicine}, volume = {15}, journal = {Journal of Translational Medicine}, doi = {10.1186/s12967-017-1368-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225516}, year = {2017}, abstract = {Background: Ulcerative colitis (UC) is a highly progressive inflammatory disease that requires the interaction of epithelial, immune, endothelial and muscle cells and fibroblasts. Previous studies suggested two inflammatory conditions in UC-patients: 'acute' and 'remodeling' and that the design of a disease network might improve the understanding of the inflammatory processes. The objective of the study was to design and validate a disease network in the NOD-SCID IL2rγ\(^{null}\) (NSG)-UC mouse model to get a better understanding of the inflammatory processes. Methods: Leukocytes were isolated from the spleen of NSG-UC mice and subjected to flow cytometric analysis. RT-PCR and RNAseq analysis were performed from distal parts of the colon. Based on these analyses and the effects of interleukins, chemokines and growth factors described in the literature, a disease network was designed. To validate the disease network the effect of infliximab and pitrakinra was tested in the NSG-UC model. A clinical- and histological score, frequencies of human leukocytes isolated from spleen and mRNA expression levels from distal parts of the colon were determined. Results: Analysis of leukocytes isolated from the spleen of challenged NSG-UC mice corroborated CD64, CD163 and CD1a expressing CD14+ monocytes, CD1a expressing CD11b+ macrophages and HGF, TARC, IFNγ and TGFß1 mRNA as inflammatory markers. The disease network suggested that a proinflammatory condition elicited by IL-17c and lipids and relayed by cytotoxic T-cells, Th17 cells and CD1a expressing macrophages and monocytes. Conversely, the remodeling condition was evoked by IL-34 and TARC and promoted by Th2 cells and M2 monocytes. Mice benefitted from treatment with infliximab as indicated by the histological- and clinical score. As predicted by the disease network infliximab reduced the proinflammatory response by suppressing M1 monocytes and CD1a expressing monocytes and macrophages and decreased levels of IFNγ, TARC and HGF mRNA. As predicted by the disease network inflammation aggravated in the presence of pitrakinra as indicated by the clinical and histological score, elevated frequencies of CD1a expressing macrophages and TNFα and IFNγ mRNA levels. Conclusions: The combination of the disease network and the NSG-UC animal model might be developed into a powerful tool to predict efficacy or in-efficacy and potential mechanistic side effects.}, language = {en} } @article{PalamidesJodeleitFoehlingeretal.2016, author = {Palamides, Pia and Jodeleit, Henrika and F{\"o}hlinger, Michael and Beigel, Florian and Herbach, Nadja and Mueller, Thomas and Wolf, Eckhard and Siebeck, Matthias and Gropp, Roswitha}, title = {A mouse model for ulcerative colitis based on NOD-scid IL2R gamma(null) mice reconstituted with peripheral blood mononuclear cells from affected individuals}, series = {Disease Models \& Mechanisms}, volume = {9}, journal = {Disease Models \& Mechanisms}, doi = {10.1242/dmm.025452}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164946}, pages = {985-997}, year = {2016}, abstract = {Animal models reflective of ulcerative colitis (UC) remain a major challenge, and yet are crucial to understand mechanisms underlying the onset of disease and inflammatory characteristics of relapses and remission. Mouse models in which colitis-like symptoms are induced through challenge with toxins such as oxazolone, dextran sodium sulfate (DSS) or 2,4,6-trinitrobenzenesulfonic acid (TNBS) have been instrumental in understanding the inflammatory processes of UC. However, these neither reflect the heterogeneous symptoms observed in the UC-affected population nor can they be used to test the efficacy of inhibitors developed against human targets where high sequence and structural similarity of the respective ligands is lacking. In an attempt to overcome these problems, we have developed a mouse model that relies on NOD-scid IL2R γnull mice reconstituted with peripheral blood mononuclear cells derived from UC-affected individuals. Upon challenge with ethanol, mice developed colitis-like symptoms and changes in the colon architecture, characterized by influx of inflammatory cells, edema, crypt loss, crypt abscesses and epithelial hyperplasia, as previously observed in immune-competent mice. TARC, TGFβ1 and HGF expression increased in distal parts of the colon. Analysis of human leucocytes isolated from mouse spleen revealed an increase in frequencies of CD1a+, CD64+, CD163+ and TSLPR+ CD14+ monocytes, and antigen-experienced CD44+ CD4+ and CD8+ T-cells in response to ethanol. Analysis of human leucocytes from the colon of challenged mice identified CD14+ monocytes and CD11b+ monocytes as the predominant populations. Quantitative real-time PCR (RT-PCR) analysis from distal parts of the colon indicated that IFNγ might be one of the cytokines driving inflammation. Treatment with infliximab ameliorated symptoms and pathological manifestations, whereas pitrakinra had no therapeutic benefit. Thus, this model is partially reflective of the human disease and might help to increase the translation of animal and clinical studies.}, language = {en} }