@article{ChatterjeeAndrulisStuehmeretal.2013, author = {Chatterjee, Manik and Andrulis, Mindaugas and St{\"u}hmer, Thorsten and M{\"u}ller, Elisabeth and Hofmann, Claudia and Steinbrunn, Torsten and Heimberger, Tanja and Schraud, Heike and Kressmann, Stefanie and Einsele, Hermann and Bargou, Ralf C.}, title = {The PI3K/Akt signaling pathway regulates the expression of Hsp70, which critically contributes to Hsp90-chaperone function and tumor cell survival in multiple myeloma}, series = {Haematologica}, volume = {98}, journal = {Haematologica}, number = {7}, doi = {10.3324/haematol.2012.066175}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130574}, pages = {1132-1141}, year = {2013}, abstract = {Despite therapeutic advances multiple myeloma remains largely incurable, and novel therapeutic concepts are needed. The Hsp90-chaperone is a reasonable therapeutic target, because it maintains oncogenic signaling of multiple deregulated pathways. However, in contrast to promising pre-clinical results, only limited clinical efficacy has been achieved through pharmacological Hsp90 inhibition. Because Hsp70 has been described to interact functionally with the Hsp90-complex, we analyzed the suitability of Hsp72 and Hsp73 as potential additional target sites. Expression of Hsp72 and Hsp73 in myeloma cells was analyzed by immunohistochemical staining and western blotting. Short interfering RNA-mediated knockdown or pharmacological inhibition of Hsp72 and Hsp73 was performed to evaluate the role of these proteins in myeloma cell survival and for Hsp90-chaperone function. Furthermore, the role of PI3K-dependent signaling in constitutive and inducible Hsp70 expression was investigated using short interfering RNA-mediated and pharmacological PI3K inhibition. Hsp72 and Hsp73 were frequently overexpressed in multiple myeloma. Knockdown of Hsp72 and/or Hsp73 or treatment with VER-155008 induced apoptosis of myeloma cells. Hsp72/Hsp73 inhibition decreased protein levels of Hsp90-chaperone clients affecting multiple oncogenic signaling pathways, and acted synergistically with the Hsp90 inhibitor NVP-AUY922 in the induction of death of myeloma cells. Inhibition of the PI3K/Akt/GSK3b pathway with short interfering RNA or PI103 decreased expression of the heat shock transcription factor 1 and down-regulated constitutive and inducible Hsp70 expression. Treatment of myeloma cells with a combination of NVP-AUY922 and PI103 resulted in additive to synergistic cytotoxicity. In conclusion, Hsp72 and Hsp73 sustain Hsp90-haperone function and critically contribute to the survival of myeloma cells. Translation of Hsp70 inhibition into the clinic is therefore highly desirable. Treatment with PI3K inhibitors might represent an alternative therapeutic strategy to target Hsp70.}, language = {en} } @article{RascheDuellMorgneretal.2013, author = {Rasche, Leo and Duell, Johannes and Morgner, Charlotte and Chatterjee, Manik and Hensel, Frank and Rosenwald, Andreas and Einsele, Hermann and Topp, Max S. and Br{\"a}ndlein, Stephanie}, title = {The Natural Human IgM Antibody PAT-SM6 Induces Apoptosis in Primary Human Multiple Myeloma Cells by Targeting Heat Shock Protein GRP78}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0063414}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130125}, pages = {e63414}, year = {2013}, abstract = {In contrast to other haematological malignancies, targeted immunotherapy has not entered standard treatment regimens for de novo or relapsed multiple myeloma (MM) yet. While a number of IgG-formatted monoclonal antibodies are currently being evaluated in clinical trials in MM, our study aimed to investigate whether the fully human IgM monoclonal antibody PAT-SM6 that targets a tumour-specific variant of the heat shock protein GRP78 might be an attractive candidate for future immunotherapeutic approaches. We here show that GRP78 is stably and consistently expressed on the surface on tumour cells from patients with de novo, but also relapsed MM and that binding of PAT-SM6 to MM cells can specifically exert cytotoxic effects on malignant plasma cells, whereas non-malignant cells are not targeted. We demonstrate that the induction of apoptosis and, to a lesser extent, complement dependent cytotoxicity is the main mode of action of PAT-SM6, whereas antibody dependent cellular cytotoxicity does not appear to contribute to the cytotoxic properties of this antibody. Given the favourable safety profile of PAT-SM6 in monkeys, but also in a recent phase I trial in patients with malignant melanoma, our results form the basis for a planned phase I study in patients with relapsed MM.}, language = {en} }