@article{AmeriSchiattarellaCrottietal.2020, author = {Ameri, Pietro and Schiattarella, Gabriele Giacomo and Crotti, Lia and Torchio, Margherita and Bertero, Edoardo and Rodolico, Daniele and Forte, Maurizio and Di Mauro, Vittoria and Paolillo, Roberta and Chimenti, Cristina and Torella, Daniele and Catalucci, Daniele and Sciarretta, Sebastiano and Basso, Cristina and Indolfi, Ciro and Perrino, Cinzia}, title = {Novel basic science insights to improve the management of heart failure: Review of the working group on cellular and molecular biology of the heart of the Italian Society of Cardiology}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {4}, issn = {1422-0067}, doi = {10.3390/ijms21041192}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285085}, year = {2020}, abstract = {Despite important advances in diagnosis and treatment, heart failure (HF) remains a syndrome with substantial morbidity and dismal prognosis. Although implementation and optimization of existing technologies and drugs may lead to better management of HF, new or alternative strategies are desirable. In this regard, basic science is expected to give fundamental inputs, by expanding the knowledge of the pathways underlying HF development and progression, identifying approaches that may improve HF detection and prognostic stratification, and finding novel treatments. Here, we discuss recent basic science insights that encompass major areas of translational research in HF and have high potential clinical impact.}, language = {en} } @article{SchwemmleinMaackBertero2022, author = {Schwemmlein, Julia and Maack, Christoph and Bertero, Edoardo}, title = {Mitochondria as therapeutic targets in heart failure}, series = {Current Heart Failure Reports}, volume = {19}, journal = {Current Heart Failure Reports}, number = {2}, doi = {10.1007/s11897-022-00539-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324015}, pages = {27-37}, year = {2022}, abstract = {Purpose of Review We review therapeutic approaches aimed at restoring function of the failing heart by targeting mitochondrial reactive oxygen species (ROS), ion handling, and substrate utilization for adenosine triphosphate (ATP) production. Recent Findings Mitochondria-targeted therapies have been tested in animal models of and humans with heart failure (HF). Cardiac benefits of sodium/glucose cotransporter 2 inhibitors might be partly explained by their effects on ion handling and metabolism of cardiac myocytes. Summary The large energy requirements of the heart are met by oxidative phosphorylation in mitochondria, which is tightly regulated by the turnover of ATP that fuels cardiac contraction and relaxation. In heart failure (HF), this mechano-energetic coupling is disrupted, leading to bioenergetic mismatch and production of ROS that drive the progression of cardiac dysfunction. Furthermore, HF is accompanied by changes in substrate uptake and oxidation that are considered detrimental for mitochondrial oxidative metabolism and negatively affect cardiac efficiency. Mitochondria lie at the crossroads of metabolic and energetic dysfunction in HF and represent ideal therapeutic targets.}, language = {en} }