@article{SuratVogelWiegeringetal.2021, author = {Surat, G{\"u}zin and Vogel, Ulrich and Wiegering, Armin and Germer, Christoph-Thomas and Lock, Johan Friso}, title = {Defining the scope of antimicrobial stewardship interventions on the prescription quality of antibiotics for surgical intra-abdominal infections}, series = {Antibiotics}, volume = {10}, journal = {Antibiotics}, number = {1}, issn = {2079-6382}, doi = {10.3390/antibiotics10010073}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223034}, year = {2021}, abstract = {Background: The aim of this study was to assess the impact of antimicrobial stewardship interventions on surgical antibiotic prescription behavior in the management of non-elective surgical intra-abdominal infections, focusing on postoperative antibiotic use, including the appropriateness of indications. Methods: A single-center quality improvement study with retrospective evaluation of the impact of antimicrobial stewardship measures on optimizing antibacterial use in intra-abdominal infections requiring emergency surgery was performed. The study was conducted in a tertiary hospital in Germany from January 1, 2016, to January 30, 2020, three years after putting a set of antimicrobial stewardship standards into effect. Results: 767 patients were analyzed (n = 495 in 2016 and 2017, the baseline period; n = 272 in 2018, the antimicrobial stewardship period). The total days of therapy per 100 patient days declined from 47.0 to 42.2 days (p = 0.035). The rate of patients receiving postoperative therapy decreased from 56.8\% to 45.2\% (p = 0.002), comparing both periods. There was a significant decline in the rate of inappropriate indications (17.4\% to 8.1 \%, p = 0.015) as well as a significant change from broad-spectrum to narrow-spectrum antibiotic use (28.8\% to 6.5\%, p ≤ 0.001) for postoperative therapy. The significant decline in antibiotic use did not affect either clinical outcomes or the rate of postoperative wound complications. Conclusions: Postoperative antibiotic use for intra-abdominal infections could be significantly reduced by antimicrobial stewardship interventions. The identification of inappropriate indications remains a key target for antimicrobial stewardship programs.}, language = {en} } @article{MarincolaLiongSchoenetal.2021, author = {Marincola, Gabriella and Liong, Olivia and Schoen, Christoph and Abouelfetouh, Alaa and Hamdy, Aisha and Wencker, Freya D. R. and Marciniak, Tessa and Becker, Karsten and K{\"o}ck, Robin and Ziebuhr, Wilma}, title = {Antimicrobial Resistance Profiles of Coagulase-Negative Staphylococci in Community-Based Healthy Individuals in Germany}, series = {Frontiers in Public Health}, volume = {9}, journal = {Frontiers in Public Health}, issn = {2296-2565}, doi = {10.3389/fpubh.2021.684456}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240881}, year = {2021}, abstract = {Coagulase-negative staphylococci (CoNS) are common opportunistic pathogens, but also ubiquitous human and animal commensals. Infection-associated CoNS from healthcare environments are typically characterized by pronounced antimicrobial resistance (AMR) including both methicillin- and multidrug-resistant isolates. Less is known about AMR patterns of CoNS colonizing the general population. Here we report on AMR in commensal CoNS recovered from 117 non-hospitalized volunteers in a region of Germany with a high livestock density. Among the 69 individuals colonized with CoNS, 29 had reported contacts to either companion or farm animals. CoNS were selectively cultivated from nasal swabs, followed by species definition by 16S rDNA sequencing and routine antibiotic susceptibility testing. Isolates displaying phenotypic AMR were further tested by PCR for presence of selected AMR genes. A total of 127 CoNS were isolated and Staphylococcus epidermidis (75\%) was the most common CoNS species identified. Nine isolates (7\%) were methicillin-resistant (MR) and carried the mecA gene, with seven individuals (10\%) being colonized with at least one MR-CoNS isolate. While resistance against gentamicin, phenicols and spectinomycin was rare, high resistance rates were found against tetracycline (39\%), erythromycin (33\%) and fusidic acid (24\%). In the majority of isolates, phenotypic resistance could be associated with corresponding AMR gene detection. Multidrug-resistance (MDR) was observed in 23\% (29/127) of the isolates, with 33\% (23/69) of the individuals being colonized with MDR-CoNS. The combined data suggest that MR- and MDR-CoNS are present in the community, with previous animal contact not significantly influencing the risk of becoming colonized with such isolates.}, language = {en} } @article{WaltherZimmermannTheuersbacheretal.2021, author = {Walther, Grit and Zimmermann, Anna and Theuersbacher, Johanna and Kaerger, Kerstin and Lilienfeld-Toal, Marie von and Roth, Mathias and Kampik, Daniel and Geerling, Gerd and Kurzai, Oliver}, title = {Eye infections caused by filamentous fungi: spectrum and antifungal susceptibility of the prevailing agents in Germany}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {7}, issn = {2309-608X}, doi = {10.3390/jof7070511}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241810}, year = {2021}, abstract = {Fungal eye infections can lead to loss of vision and blindness. The disease is most prevalent in the tropics, although case numbers in moderate climates are increasing as well. This study aimed to determine the dominating filamentous fungi causing eye infections in Germany and their antifungal susceptibility profiles in order to improve treatment, including cases with unidentified pathogenic fungi. As such, we studied all filamentous fungi isolated from the eye or associated materials that were sent to the NRZMyk between 2014 and 2020. All strains were molecularly identified and antifungal susceptibility testing according to the EUCAST protocol was performed for common species. In total, 242 strains of 66 species were received. Fusarium was the dominating genus, followed by Aspergillus, Purpureocillium, Alternaria, and Scedosporium. The most prevalent species in eye samples were Fusarium petroliphilum, F. keratoplasticum, and F. solani of the Fusarium solani species complex. The spectrum of species comprises less susceptible taxa for amphotericin B, natamycin, and azoles, including voriconazole. Natamycin is effective for most species but not for Aspergillus flavus or Purpureocillium spp. Some strains of F. solani show MICs higher than 16 mg/L. Our data underline the importance of species identification for correct treatment.}, language = {en} } @article{KurotschkaTiedemannWolfetal.2021, author = {Kurotschka, Peter Konstantin and Tiedemann, Elena and Wolf, Dominik and Thier, Nicola and Forster, Johannes and Liese, Johannes G. and Gagyor, Ildiko}, title = {Management of common infections in German primary care: a cross-sectional survey of knowledge and confidence among General Practitioners and outpatient pediatricians}, series = {Antibiotics}, volume = {10}, journal = {Antibiotics}, number = {9}, issn = {2079-6382}, doi = {10.3390/antibiotics10091131}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246272}, year = {2021}, abstract = {Outpatient antibiotic use is closely related to antimicrobial resistance and in Germany, almost 70\% of antibiotic prescriptions in human health are issued by primary care physicians (PCPs). The aim of this study was to explore PCPs, namely General Practitioners' (GPs) and outpatient pediatricians' (PDs) knowledge of guideline recommendations on rational antimicrobial treatment, the determinants of confidence in treatment decisions and the perceived need for training in this topic in a large sample of PCPs from southern Germany. Out of 3753 reachable PCPs, 1311 completed the survey (overall response rate = 34.9\%). Knowledge of guideline recommendations and perceived confidence in making treatment decisions were high in both GPs and PDs. The two highest rated influencing factors on prescribing decisions were reported to be guideline recommendations and own clinical experiences, hence patients' demands and expectations were judged as not influencing treatment decisions. The majority of physicians declared to have attended at least one specific training course on antibiotic use, yet almost all the participating PCPs declared to need more training on this topic. More studies are needed to explore how consultation-related and context-specific factors could influence antibiotic prescriptions in general and pediatric primary care in Germany beyond knowledge. Moreover, efforts should be undertaken to explore the training needs of PCPs in Germany, as this would serve the development of evidence-based educational interventions targeted to the improvement of antibiotic prescribing decisions rather than being focused solely on knowledge of guidelines.}, language = {en} } @article{PetersFohmannRudeletal.2021, author = {Peters, Simon and Fohmann, Ingo and Rudel, Thomas and Schubert-Unkmeir, Alexandra}, title = {A Comprehensive Review on the Interplay between Neisseria spp. and Host Sphingolipid Metabolites}, series = {Cells}, volume = {10}, journal = {Cells}, number = {11}, issn = {2073-4409}, doi = {10.3390/cells10113201}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250203}, year = {2021}, abstract = {Sphingolipids represent a class of structural related lipids involved in membrane biology and various cellular processes including cell growth, apoptosis, inflammation and migration. Over the past decade, sphingolipids have become the focus of intensive studies regarding their involvement in infectious diseases. Pathogens can manipulate the sphingolipid metabolism resulting in cell membrane reorganization and receptor recruitment to facilitate their entry. They may recruit specific host sphingolipid metabolites to establish a favorable niche for intracellular survival and proliferation. In contrast, some sphingolipid metabolites can also act as a first line defense against bacteria based on their antimicrobial activity. In this review, we will focus on the strategies employed by pathogenic Neisseria spp. to modulate the sphingolipid metabolism and hijack the sphingolipid balance in the host to promote cellular colonization, invasion and intracellular survival. Novel techniques and innovative approaches will be highlighted that allow imaging of sphingolipid derivatives in the host cell as well as in the pathogen.}, language = {en} } @article{SattlerNosterBrunkeetal.2021, author = {Sattler, Janko and Noster, Janina and Brunke, Anne and Plum, Georg and Wiegel, Pia and Kurzai, Oliver and Meis, Jacques F. and Hamprecht, Axel}, title = {Comparison of two commercially available qPCR kits for the detection of Candida auris}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {2}, issn = {2309-608X}, doi = {10.3390/jof7020154}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228879}, year = {2021}, abstract = {Candida auris is an emerging pathogen with resistance to many commonly used antifungal agents. Infections with C. auris require rapid and reliable detection methods to initiate successful medical treatment and contain hospital outbreaks. Conventional identification methods are prone to errors and can lead to misidentifications. PCR-based assays, in turn, can provide reliable results with low turnaround times. However, only limited data are available on the performance of commercially available assays for C. auris detection. In the present study, the two commercially available PCR assays AurisID (OLM, Newcastle Upon Tyne, UK) and Fungiplex Candida Auris RUO Real-Time PCR (Bruker, Bremen, Germany) were challenged with 29 C. auris isolates from all five clades and eight other Candida species as controls. AurisID reliably detected C. auris with a limit of detection (LoD) of 1 genome copies/reaction. However, false positive results were obtained with high DNA amounts of the closely related species C. haemulonii, C. duobushaemulonii and C. pseudohaemulonii. The Fungiplex Candida Auris RUO Real-Time PCR kit detected C. auris with an LoD of 9 copies/reaction. No false positive results were obtained with this assay. In addition, C. auris could also be detected in human blood samples spiked with pure fungal cultures by both kits. In summary, both kits could detect C. auris-DNA at low DNA concentrations but differed slightly in their limits of detection and specificity.}, language = {en} } @article{StreckGaalForsteretal.2021, author = {Streck, Laura Elisa and Gaal, Chiara and Forster, Johannes and Konrads, Christian and Hertzberg-Boelch, Sebastian Philipp von and Rueckl, Kilian}, title = {Defining a synovial fluid white blood cell count threshold to predict periprosthetic infection after shoulder arthroplasty}, series = {Journal of Clinical Medicine}, volume = {11}, journal = {Journal of Clinical Medicine}, number = {1}, issn = {2077-0383}, doi = {10.3390/jcm11010050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252275}, year = {2021}, abstract = {Background: The diagnosis of periprosthetic shoulder infection (PSI) requires a thorough diagnostic workup. Synovial fluid aspiration has been proven to be a reliable tool in the diagnosis of joint infections of the lower extremity, but shoulder specific data is limited. This study defines a threshold for synovial fluid white blood cell count (WBC) and assesses the reliability of microbiological cultures. Methods: Retrospective study of preoperative and intraoperative fluid aspiration of 31 patients who underwent a revision of a shoulder arthroplasty (15 with PSI defined by IDSA criteria, 16 without infection). The threshold for WBC was calculated by ROC/AUC analysis. Results: WBC was significantly higher in patients with PSI than in other patients. A threshold of 2800 leucocytes/mm\(^3\) showed a sensitivity of 87\% and a specificity of 88\% (AUROC 0.92). Microbiological cultures showed a sensitivity of 76\% and a specificity of 100\%. Conclusions: A threshold of 2800 leucocytes/mm\(^3\) in synovial fluid can be recommended to predict PSI. Microbiological culture has an excellent specificity and allows for targeted antibiotic therapy. Joint aspiration presents an important pillar to diagnose PSI.}, language = {en} } @phdthesis{Peters2021, author = {Peters, Simon}, title = {The impact of sphingolipids on \(Neisseria\) \(meningitidis\) and their role in meningococcal pathogenicity}, doi = {10.25972/OPUS-22623}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226233}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The obligate human pathogen Neisseria meningitidis is a major cause of sepsis and meningitis worldwide. It affects mainly toddlers and infants and is responsible for thousands of deaths each year. In this study, different aspects of the importance of sphingolipids in meningococcal pathogenicity were investigated. In a first step, the acid sphingomyelinase (ASM), which degrades membrane sphingomyelin to ceramide, was studied in the context of meningococcal infection. A requirement for ASM surface activity is its translocation from the lysosomal compartment to the cell surface, a process that is currently poorly understood. This study used various approaches, including classical invasion and adherence assays, flow cytometry, and classical and super resolution immunofluorescence microscopy (dSTORM). The results showed that the live, highly piliated N. meningitidis strain 8013/12 induced calcium-dependent ASM translocation in human brain microvascular endothelial cells (HBMEC). Furthermore, it promoted the formation of ceramide-rich platforms (CRPs). In addition, ASM translocation and CRP formation were observed after treating the cells with pili-enriched fractions derived from the same strain. The importance for N. meningitidis to utilize this pathway was shown by the inhibition of the calcium-dependent ASM translocation, which greatly decreased the number of invasive bacteria. I also investigated the importance of the glycosphingolipids GM1 and Gb3. The results showed that GM1, but not Gb3, plays an important role in the ability of N. meningitidis to invade HBMEC. By combining dSTORM imaging and microbiological approaches, we demonstrated that GM1 accumulated prolifically around bacteria during the infection, and that this interaction seemed essential for meningococcal invasion. Sphingolipids are not only known for their beneficial effect on pathogens. Sphingoid bases, including sphingosine, are known for their antimicrobial activity. In the last part of this study, a novel correlative light and electron microscopy approach was established in the combination with click chemistry to precisely localize azido-functionalized sphingolipids in N. meningitidis. The result showed a distinct concentration-dependent localization in either the outer membrane (low concentration) or accumulated in the cytosol (high concentration). This pattern was confirmed by mass spectrometry on separated membrane fractions. Our data provide a first insight into the underlying mechanism of antimicrobial sphingolipids.}, subject = {Neisseria meningitidis}, language = {en} } @article{PetersKaiserFinketal.2021, author = {Peters, Simon and Kaiser, Lena and Fink, Julian and Schumacher, Fabian and Perschin, Veronika and Schlegel, Jan and Sauer, Markus and Stigloher, Christian and Kleuser, Burkhard and Seibel, Juergen and Schubert-Unkmeir, Alexandra}, title = {Click-correlative light and electron microscopy (click-AT-CLEM) for imaging and tracking azido-functionalized sphingolipids in bacteria}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-83813-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259147}, pages = {4300}, year = {2021}, abstract = {Sphingolipids, including ceramides, are a diverse group of structurally related lipids composed of a sphingoid base backbone coupled to a fatty acid side chain and modified terminal hydroxyl group. Recently, it has been shown that sphingolipids show antimicrobial activity against a broad range of pathogenic microorganisms. The antimicrobial mechanism, however, remains so far elusive. Here, we introduce 'click-AT-CLEM', a labeling technique for correlated light and electron microscopy (CLEM) based on the super-resolution array tomography (srAT) approach and bio-orthogonal click chemistry for imaging of azido-tagged sphingolipids to directly visualize their interaction with the model Gram-negative bacterium Neisseria meningitidis at subcellular level. We observed ultrastructural damage of bacteria and disruption of the bacterial outer membrane induced by two azido-modified sphingolipids by scanning electron microscopy and transmission electron microscopy. Click-AT-CLEM imaging and mass spectrometry clearly revealed efficient incorporation of azido-tagged sphingolipids into the outer membrane of Gram-negative bacteria as underlying cause of their antimicrobial activity.}, language = {en} } @article{PageWallstabeLotheretal.2021, author = {Page, Lukas and Wallstabe, Julia and Lother, Jasmin and Bauser, Maximilian and Kniemeyer, Olaf and Strobel, Lea and Voltersen, Vera and Teutschbein, Janka and Hortschansky, Peter and Morton, Charles Oliver and Brakhage, Axel A. and Topp, Max and Einsele, Hermann and Wurster, Sebastian and Loeffler, Juergen}, title = {CcpA- and Shm2-Pulsed Myeloid Dendritic Cells Induce T-Cell Activation and Enhance the Neutrophilic Oxidative Burst Response to Aspergillus fumigatus}, series = {Frontiers in Immunology}, volume = {12}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2021.659752}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239493}, year = {2021}, abstract = {Aspergillus fumigatus causes life-threatening opportunistic infections in immunocompromised patients. As therapeutic outcomes of invasive aspergillosis (IA) are often unsatisfactory, the development of targeted immunotherapy remains an important goal. Linking the innate and adaptive immune system, dendritic cells are pivotal in anti-Aspergillus defense and have generated interest as a potential immunotherapeutic approach in IA. While monocyte-derived dendritic cells (moDCs) require ex vivo differentiation, antigen-pulsed primary myeloid dendritic cells (mDCs) may present a more immediate platform for immunotherapy. To that end, we compared the response patterns and cellular interactions of human primary mDCs and moDCs pulsed with an A. fumigatus lysate and two A. fumigatus proteins (CcpA and Shm2) in a serum-free, GMP-compliant medium. CcpA and Shm2 triggered significant upregulation of maturation markers in mDCs and, to a lesser extent, moDCs. Furthermore, both A. fumigatus proteins elicited the release of an array of key pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, IL-8, and CCL3 from both DC populations. Compared to moDCs, CcpA- and Shm2-pulsed mDCs exhibited greater expression of MHC class II antigens and stimulated stronger proliferation and IFN-γ secretion from autologous CD4\(^+\) and CD8\(^+\) T-cells. Moreover, supernatants of CcpA- and Shm2-pulsed mDCs significantly enhanced the oxidative burst in allogeneic neutrophils co-cultured with A. fumigatus germ tubes. Taken together, our in vitro data suggest that ex vivo CcpA- and Shm2-pulsed primary mDCs have the potential to be developed into an immunotherapeutic approach to tackle IA.}, language = {en} }