@article{VieiraJonesDanonetal.2012, author = {Vieira, Jacqueline and Jones, Alex R. and Danon, Antoine and Sakuma, Michiyo and Hoang, Nathalie and Robles, David and Tait, Shirley and Heyes, Derren J. and Picot, Marie and Yoshii, Taishi and Helfrich-F{\"o}rster, Charlotte and Soubigou, Guillaume and Coppee, Jean-Yves and Klarsfeld, Andr{\´e} and Rouyer, Francois and Scrutton, Nigel S. and Ahmad, Margaret}, title = {Human Cryptochrome-1 Confers Light Independent Biological Activity in Transgenic Drosophila Correlated with Flavin Radical Stability}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {3}, doi = {10.1371/journal.pone.0031867}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134513}, pages = {e31867}, year = {2012}, abstract = {Cryptochromes are conserved flavoprotein receptors found throughout the biological kingdom with diversified roles in plant development and entrainment of the circadian clock in animals. Light perception is proposed to occur through flavin radical formation that correlates with biological activity in vivo in both plants and Drosophila. By contrast, mammalian (Type II) cryptochromes regulate the circadian clock independently of light, raising the fundamental question of whether mammalian cryptochromes have evolved entirely distinct signaling mechanisms. Here we show by developmental and transcriptome analysis that Homo sapiens cryptochrome - 1 (HsCRY1) confers biological activity in transgenic expressing Drosophila in darkness, that can in some cases be further stimulated by light. In contrast to all other cryptochromes, purified recombinant HsCRY1 protein was stably isolated in the anionic radical flavin state, containing only a small proportion of oxidized flavin which could be reduced by illumination. We conclude that animal Type I and Type II cryptochromes may both have signaling mechanisms involving formation of a flavin radical signaling state, and that light independent activity of Type II cryptochromes is a consequence of dark accumulation of this redox form in vivo rather than of a fundamental difference in signaling mechanism.}, language = {en} } @article{DusikSenthilanMentzeletal.2014, author = {Dusik, Verena and Senthilan, Pingkalai R. and Mentzel, Benjamin and Hartlieb, Heiko and W{\"u}lbeck, Corina and Yoshii, Taishi and Raabe, Thomas and Helfrich-F{\"o}rster, Charlotte}, title = {The MAP Kinase p38 Is Part of Drosophila melanogaster's Circadian Clock}, series = {PLoS Genetics}, volume = {10}, journal = {PLoS Genetics}, number = {8}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1004565}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119433}, pages = {e1004565}, year = {2014}, abstract = {All organisms have to adapt to acute as well as to regularly occurring changes in the environment. To deal with these major challenges organisms evolved two fundamental mechanisms: the p38 mitogen-activated protein kinase (MAPK) pathway, a major stress pathway for signaling stressful events, and circadian clocks to prepare for the daily environmental changes. Both systems respond sensitively to light. Recent studies in vertebrates and fungi indicate that p38 is involved in light-signaling to the circadian clock providing an interesting link between stress-induced and regularly rhythmic adaptations of animals to the environment, but the molecular and cellular mechanisms remained largely unknown. Here, we demonstrate by immunocytochemical means that p38 is expressed in Drosophila melanogaster's clock neurons and that it is activated in a clock-dependent manner. Surprisingly, we found that p38 is most active under darkness and, besides its circadian activation, additionally gets inactivated by light. Moreover, locomotor activity recordings revealed that p38 is essential for a wild-type timing of evening activity and for maintaining ∼ 24 h behavioral rhythms under constant darkness: flies with reduced p38 activity in clock neurons, delayed evening activity and lengthened the period of their free-running rhythms. Furthermore, nuclear translocation of the clock protein Period was significantly delayed on the expression of a dominant-negative form of p38b in Drosophila's most important clock neurons. Western Blots revealed that p38 affects the phosphorylation degree of Period, what is likely the reason for its effects on nuclear entry of Period. In vitro kinase assays confirmed our Western Blot results and point to p38 as a potential "clock kinase" phosphorylating Period. Taken together, our findings indicate that the p38 MAP Kinase is an integral component of the core circadian clock of Drosophila in addition to playing a role in stress-input pathways.}, language = {en} } @article{JoschinskiBeerHelfrichFoersteretal.2016, author = {Joschinski, Jens and Beer, Katharina and Helfrich-F{\"o}rster, Charlotte and Krauss, Jochen}, title = {Pea Aphids (Hemiptera: Aphididae) Have Diurnal Rhythms When Raised Independently of a Host Plant}, series = {Journal of Insect Science}, volume = {16}, journal = {Journal of Insect Science}, number = {1}, doi = {10.1093/jisesa/iew013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168783}, pages = {31}, year = {2016}, abstract = {Seasonal timing is assumed to involve the circadian clock, an endogenous mechanism to track time and measure day length. Some debate persists, however, and aphids were among the first organisms for which circadian clock involvement was questioned. Inferences about links to phenology are problematic, as the clock itself is little investigated in aphids. For instance, it is unknown whether aphids possess diurnal rhythms at all. Possibly, the close interaction with host plants prevents independent measurements of rhythmicity. We reared the pea aphid Acyrthosiphon pisum (Harris) on an artificial diet, and recorded survival, moulting, and honeydew excretion. Despite their plant-dependent life style, aphids were independently rhythmic under light-dark conditions. This first demonstration of diurnal aphid rhythms shows that aphids do not simply track the host plant's rhythmicity.}, language = {en} } @article{ChenReiherHermannLuibletal.2016, author = {Chen, Jiangtian and Reiher, Wencke and Hermann-Luibl, Christiane and Sellami, Azza and Cognigni, Paola and Kondo, Shu and Helfrich-F{\"o}rster, Charlotte and Veenstra, Jan A. and Wegener, Christian}, title = {Allatostatin A Signalling in Drosophila Regulates Feeding and Sleep and Is Modulated by PDF}, series = {PLoS Genetics}, volume = {12}, journal = {PLoS Genetics}, number = {9}, doi = {10.1371/journal.pgen.1006346}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178170}, year = {2016}, abstract = {Feeding and sleep are fundamental behaviours with significant interconnections and cross-modulations. The circadian system and peptidergic signals are important components of this modulation, but still little is known about the mechanisms and networks by which they interact to regulate feeding and sleep. We show that specific thermogenetic activation of peptidergic Allatostatin A (AstA)-expressing PLP neurons and enteroendocrine cells reduces feeding and promotes sleep in the fruit fly Drosophila. The effects of AstA cell activation are mediated by AstA peptides with receptors homolog to galanin receptors subserving similar and apparently conserved functions in vertebrates. We further identify the PLP neurons as a downstream target of the neuropeptide pigment-dispersing factor (PDF), an output factor of the circadian clock. PLP neurons are contacted by PDF-expressing clock neurons, and express a functional PDF receptor demonstrated by cAMP imaging. Silencing of AstA signalling and continuous input to AstA cells by tethered PDF changes the sleep/activity ratio in opposite directions but does not affect rhythmicity. Taken together, our results suggest that pleiotropic AstA signalling by a distinct neuronal and enteroendocrine AstA cell subset adapts the fly to a digestive energy-saving state which can be modulated by PDF.}, language = {en} } @article{VazeHelfrichFoerster2016, author = {Vaze, Koustubh M. and Helfrich-F{\"o}rster, Charlotte}, title = {Drosophila ezoana uses an hour-glass or highly damped circadian clock for measuring night length and inducing diapause}, series = {Physiological Entomology}, volume = {41}, journal = {Physiological Entomology}, number = {4}, doi = {10.1111/phen.12165}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204278}, pages = {378-389}, year = {2016}, abstract = {Insects inhabiting the temperate zones measure seasonal changes in day or night length to enter the overwintering diapause. Diapause induction occurs after the duration of the night exceeds a critical night length (CNL). Our understanding of the time measurement mechanisms is continuously evolving subsequent to B{\"u}nning's proposal that circadian systems play the clock role in photoperiodic time measurement (B{\"u}nning, 1936). Initially, the photoperiodic clocks were considered to be either based on circadian oscillators or on simple hour-glasses, depending on 'positive' or 'negative' responses in Nanda-Hamner and B{\"u}nsow experiments (Nanda \& Hammer, 1958; B{\"u}nsow, 1960). However, there are also species whose responses can be regarded as neither 'positive', nor as 'negative', such as the Northern Drosophila species Drosophila ezoana, which is investigated in the present study. In addition, modelling efforts show that the 'positive' and 'negative' Nanda-Hamner responses can also be provoked by circadian oscillators that are damped to different degrees: animals with highly sustained circadian clocks will respond 'positive' and those with heavily damped circadian clocks will respond 'negative'. In the present study, an experimental assay is proposed that characterizes the photoperiodic oscillators by determining the effects of non-24-h light/dark cycles (T-cycles) on critical night length. It is predicted that there is (i) a change in the critical night length as a function of T-cycle period in sustained-oscillator-based clocks and (ii) a fxed night-length measurement (i.e. no change in critical night length) in damped-oscillator-based clocks. Drosophila ezoana flies show a critical night length of approximately 7 h irrespective of T-cycle period, suggesting a damped-oscillator-based photoperiodic clock. The conclusion is strengthened by activity recordings revealing that the activity rhythm of D. ezoana flies also dampens in constant darkness.}, language = {en} } @article{BeerSteffanDewenterHaerteletal.2016, author = {Beer, Katharina and Steffan-Dewenter, Ingolf and H{\"a}rtel, Stephan and Helfrich-F{\"o}rster, Charlotte}, title = {A new device for monitoring individual activity rhythms of honey bees reveals critical effects of the social environment on behavior}, series = {Journal of Comparative Physiology A}, volume = {202}, journal = {Journal of Comparative Physiology A}, number = {8}, doi = {10.1007/s00359-016-1103-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188030}, pages = {555-565}, year = {2016}, abstract = {Chronobiological studies of individual activity rhythms in social insects can be constrained by the artificial isolation of individuals from their social context. We present a new experimental set-up that simultaneously measures the temperature rhythm in a queen-less but brood raising mini colony and the walking activity rhythms of singly kept honey bees that have indirect social contact with it. Our approach enables monitoring of individual bees in the social context of a mini colony under controlled laboratory conditions. In a pilot experiment, we show that social contact with the mini colony improves the survival of monitored young individuals and affects locomotor activity patterns of young and old bees. When exposed to conflicting Zeitgebers consisting of a light-dark (LD) cycle that is phase-delayed with respect to the mini colony rhythm, rhythms of young and old bees are socially synchronized with the mini colony rhythm, whereas isolated bees synchronize to the LD cycle. We conclude that the social environment is a stronger Zeitgeber than the LD cycle and that our new experimental set-up is well suited for studying the mechanisms of social entrainment in honey bees.}, language = {en} } @article{SenthilanHelfrichFoerster2016, author = {Senthilan, Pingkalai R. and Helfrich-F{\"o}rster, Charlotte}, title = {Rhodopsin 7-The unusual Rhodopsin in Drosophila}, series = {PeerJ}, volume = {4}, journal = {PeerJ}, doi = {10.7717/peerj.2427}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177998}, year = {2016}, abstract = {Rhodopsins are the major photopigments in the fruit fly Drosophila melanogaster. Drosophila express six well-characterized Rhodopsins (Rh1-Rh6) with distinct absorption maxima and expression pattern. In 2000, when the Drosophila genome was published, a novel Rhodopsin gene was discovered: Rhodopsin 7 (Rh7). Rh7 is highly conserved among the Drosophila genus and is also found in other arthropods. Phylogenetic trees based on protein sequences suggest that the seven Drosophila Rhodopsins cluster in three different groups. While Rh1, Rh2 and Rh6 form a "vertebrate-melanopsin-type"-cluster, and Rh3, Rh4 and Rh5 form an "insect-type"-Rhodopsin cluster, Rh7 seem to form its own cluster. Although Rh7 has nearly all important features of a functional Rhodopsin, it differs from other Rhodopsins in its genomic and structural properties, suggesting it might have an overall different role than other known Rhodopsins.}, language = {en} } @article{FischerHelfrichFoersterPeschel2016, author = {Fischer, Robin and Helfrich-F{\"o}rster, Charlotte and Peschel, Nicolai}, title = {GSK-3 Beta Does Not Stabilize Cryptochrome in the Circadian Clock of Drosophila}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0146571}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180370}, year = {2016}, abstract = {Cryptochrome (CRY) is the primary photoreceptor of Drosophila's circadian clock. It resets the circadian clock by promoting light-induced degradation of the clock protein Timeless (TIM) in the proteasome. Under constant light, the clock stops because TIM is absent, and the flies become arrhythmic. In addition to TIM degradation, light also induces CRY degradation. This depends on the interaction of CRY with several proteins such as the E3 ubiquitin ligases Jetlag (JET) and Ramshackle (BRWD3). However, CRY can seemingly also be stabilized by interaction with the kinase Shaggy (SGG), the GSK-3 beta fly orthologue. Consequently, flies with SGG overexpression in certain dorsal clock neurons are reported to remain rhythmic under constant light. We were interested in the interaction between CRY, Ramshackle and SGG and started to perform protein interaction studies in S2 cells. To our surprise, we were not able to replicate the results, that SGG overexpression does stabilize CRY, neither in S2 cells nor in the relevant clock neurons. SGG rather does the contrary. Furthermore, flies with SGG overexpression in the dorsal clock neurons became arrhythmic as did wild-type flies. Nevertheless, we could reproduce the published interaction of SGG with TIM, since flies with SGG overexpression in the lateral clock neurons shortened their free-running period. We conclude that SGG does not directly interact with CRY but rather with TIM. Furthermore we could demonstrate, that an unspecific antibody explains the observed stabilization effects on CRY.}, language = {en} } @article{BeerJoschinskiSastreetal.2017, author = {Beer, Katharina and Joschinski, Jens and Sastre, Alazne Arrazola and Krauss, Jochen and Helfrich-F{\"o}rster, Charlotte}, title = {A damping circadian clock drives weak oscillations in metabolism and locomotor activity of aphids (Acyrthosiphon pisum)}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {14906}, doi = {10.1038/s41598-017-15014-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170020}, year = {2017}, abstract = {Timing seasonal events, like reproduction or diapause, is crucial for the survival of many species. Global change causes phenologies worldwide to shift, which requires a mechanistic explanation of seasonal time measurement. Day length (photoperiod) is a reliable indicator of winter arrival, but it remains unclear how exactly species measure day length. A reference for time of day could be provided by a circadian clock, by an hourglass clock, or, as some newer models suggest, by a damped circadian clock. However, damping of clock outputs has so far been rarely observed. To study putative clock outputs of Acyrthosiphon pisum aphids, we raised individual nymphs on coloured artificial diet, and measured rhythms in metabolic activity in light-dark illumination cycles of 16:08 hours (LD) and constant conditions (DD). In addition, we kept individuals in a novel monitoring setup and measured locomotor activity. We found that A. pisum is day-active in LD, potentially with a bimodal distribution. In constant darkness rhythmicity of locomotor behaviour persisted in some individuals, but patterns were mostly complex with several predominant periods. Metabolic activity, on the other hand, damped quickly. A damped circadian clock, potentially driven by multiple oscillator populations, is the most likely explanation of our results.}, language = {en} } @article{FujiwaraHermannLuiblKatsuraetal.2018, author = {Fujiwara, Yuri and Hermann-Luibl, Christiane and Katsura, Maki and Sekiguchi, Manabu and Ida, Takanori and Helfrich-F{\"o}rster, Charlotte and Yoshii, Taishi}, title = {The CCHamide1 Neuropeptide Expressed in the Anterior Dorsal Neuron 1 Conveys a Circadian Signal to the Ventral Lateral Neurons in Drosophila melanogaster}, series = {Frontiers in Physiology}, volume = {09}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2018.01276}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195940}, year = {2018}, abstract = {The fruit fly Drosophila melanogaster possesses approximately 150 brain clock neurons that control circadian behavioral rhythms. Even though individual clock neurons have self-sustaining oscillators, they interact and synchronize with each other through a network. However, little is known regarding the factors responsible for these network interactions. In this study, we investigated the role of CCHamide1 (CCHa1), a neuropeptide expressed in the anterior dorsal neuron 1 (DN1a), in intercellular communication of the clock neurons. We observed that CCHa1 connects the DN1a clock neurons to the ventral lateral clock neurons (LNv) via the CCHa1 receptor, which is a homolog of the gastrin-releasing peptide receptor playing a role in circadian intercellular communications in mammals. CCHa1 knockout or knockdown flies have a generally low activity level with a special reduction of morning activity. In addition, they exhibit advanced morning activity under light-dark cycles and delayed activity under constant dark conditions, which correlates with an advance/delay of PAR domain Protein 1 (PDP1) oscillations in the small-LNv (s-LNv) neurons that control morning activity. The terminals of the s-LNv neurons show rather high levels of Pigment-dispersing factor (PDF) in the evening, when PDF is low in control flies, suggesting that the knockdown of CCHa1 leads to increased PDF release; PDF signals the other clock neurons and evidently increases the amplitude of their PDP1 cycling. A previous study showed that high-amplitude PDP1 cycling increases the siesta of the flies, and indeed, CCHa1 knockout or knockdown flies exhibit a longer siesta than control flies. The DN1a neurons are known to be receptive to PDF signaling from the s-LNv neurons; thus, our results suggest that the DN1a and s-LNv clock neurons are reciprocally coupled via the neuropeptides CCHa1 and PDF, and this interaction fine-tunes the timing of activity and sleep.}, language = {en} }