@phdthesis{Heubeck2003, author = {Heubeck, Christian}, title = {Zusammensetzung eukaryotischer RNase P aus pflanzlichen Zellkernen und Plastiden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7757}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Ribonuklease P (RNase\&\#61472;P) ist eine essentielle Endonuklease, welche die 5'-Flanke von pre-tRNAs entfernt. In nahezu allen bisher untersuchten Organismen und Organellen besteht das Holoenzym aus einer RNA-Untereinheit und einer Protein-Komponente. Nur die Zusammensetzung des Enzyms in den Chloroplasten und Mitochochondrien mehrzelliger Eukaryonten scheint unklar. Eine RNA-Untereinheit konnte hier bis jetzt nicht nachgewiesen werden. Um den Aufbau der RNase\&\#61472;P aus photosynthetischen Organellen zu kl{\"a}ren, wurde die RNase\&\#61472;P aus den Cyanellen von Cyanophora paradoxa untersucht. Das Enzym enth{\"a}lt eine RNA, welche im Gegensatz zu bakteriellen RNase\&\#61472;P-RNAs nicht in der Lage ist, die pre-tRNA-Prozessierung unter in\&\#61472;vitro-Bedingungen durchzuf{\"u}hren, obwohl sie eindeutig dem cy- anobakteriellen Strukturtyp zugeordnet werden kann. Die Cyanellen-RNase\&\#61472;P-RNA aus C.\&\#61472;paradoxa kann mit rekombinanten cyanobakteriellen RNase\&\#61472;P-Proteinen zum katalytisch aktiven Holoenzym rekonstituiert werden. Das Einf{\"u}hren der hochkonservierten Nukleotide G22 und G213 in die Cyanellen-RNase\&\#61472;P-RNA f{\"u}hrt nicht zu signifikanten Unterschieden im Prozessierungsverhalten des heterologen Holoenzyms. Durch Mutationsanalyse einer cyanobakteriellen RNase\&\#61472;P-RNA an den entsprechenden Positionen wurde gezeigt, dass diese Konsensus-Nukleotide keinen essentiellen Einfluss auf die Katalyse aus{\"u}ben. Die funktionelle Charakterisierung der RNase\&\#61472;P-RNA aus den Cyanellen von G. nostochinearum best{\"a}tigt die Ergebnisse f{\"u}r C.\&\#61472;paradoxa. Die RNA besitzt keine Ribozym-Aktivit{\"a}t und kann mit cyanobakteriellen RNase\&\#61472;P-Proteinen zum aktiven Holoenzym rekonstituiert werden. Um zu kl{\"a}ren, ob die fehlende Ribozym-Aktivit{\"a}t der Cyanellen-RNase\&\#61472;P-RNAs auf das Fehlen der F{\"a}higkeit zur Substratbindung zur{\"u}ckzuf{\"u}hren ist, wurden zirkular permutierte Cyanellen-RNase P-RNAs mit kovalent verkn{\"u}pften pre-tRNAs konstruiert. Entsprechende Transkripte weisen keine Ribozymaktivit{\"a}t auf, k{\"o}nnen aber mit cyanobakteriellem RNase\&\#61472;P-Protein zum aktiven Komplex rekonstituiert werden. Die Reaktion l{\"a}uft intramolekular, da die Prozessierungsreaktion mit zirkular permutierten Konstrukten nicht durch reife tRNAs gehemmt wird. Zur Identifizierung der Protein-Untereinheit(en) aus Cyanellen-RNase\&\#61472;P wurden polyklonale Antik{\"o}rper gegen das rekombinate RNase\&\#61472;P-Protein aus dem Cyanobakterium Synechocystis PCC 6803 gewonnen. Immunoblots zeigen spezifische Signale im homologen und im Cyanellen-Extrakt, jedoch keinerlei Bindung des RNase P Proteins aus E. coli. Die hohe Spezifit{\"a}t der Antik{\"o}rper f{\"u}r ein Cyanellen-RNase P-Protein konnte durch Immunopr{\"a}zipitations-Experimente best{\"a}tigt werden. Da im vollst{\"a}ndig sequenzierten Cyanellen-Genom keine zu RNase\&\#61472;P-Proteinen homologe Sequenz identifiziert werden kann, muss das Cyanellen RNase\&\#61472;P-Protein im Kern codiert sein. Um die Proteinkomponente der Cyanellen-RNase P zu klonieren, wurde eine cDNA-Expressionsbank f{\"u}r Cyanophora paradoxa angelegt. Versuche zum Immuno-Screening wurden aufgrund eines schlechten Signal\&\#61472;:\&\#61472;Hintergrund-Verh{\"a}ltnisses nicht weiter verfolgt. Durch Screening der cDNA-Expressionsbank mit Cyanellen-RNase\&\#61472;P-RNA konnten zwei Cyanophora-Proteine mit hoher Homologie zu eukaryontischen RNA-bindenden Proteinen identifiziert werden. Das Molekulargewicht des C.\&\#61472;paradoxa-Holoenzyms wurde durch Ultrazentrifugation im Glyceringradienten zu etwa 280\&\#61472;kD bestimmt. RNase\&\#61472;P-Aktivit{\"a}t und RNase\&\#61472;P-RNA-Untereinheit korrelieren im Gradienten mit einem 30\&\#61472;kD-Protein, welches im Immunoblot mit cyanobakteriellen RNase\&\#61472;P-Protein-Antik{\"o}rpern spezifisch erkannt wird. Das Cyanellen-Holoenzym zeigt in wesentlichen Merkmalen eine {\"U}bereinstimmung mit eukaryontischer RNase\&\#61472;P. Dennoch scheint die katalytische Aktivit{\"a}t in der RNA-Untereinheit lokalisiert zu sein, da die native, relativ große Cyanellen-Protein-Untereinheit ohne Funktionsverlust gegen sehr viel kleinere cyanobakterielle Protein-Untereinheiten ausgetauscht werden kann. Die Protein-Komponente der Cyanellen RNase\&\#61472;P scheint deshalb trotz ihrer Gr{\"o}ßenzunahme im Vergleich zu ihren evolutiven, bakteriellen Vorfahren, keine weiteren essentiellen Aufgaben {\"u}bernommen zu haben. Eukaryontische RNase\&\#61472;P ist aus bis zu zehn Protein-Untereinheiten aufgebaut. Durch Genom-Analyse konnte in Arabidopsis thaliana das potentielle RNase\&\#61472;P-Protein Pop1 identifiziert werden. Mit der experimentell best{\"a}tigten Identit{\"a}t dieses Proteins wurde erstmals ein RNase\&\#61472;P-Protein aus A.\&\#61472;thaliana eindeutig identifiziert. Durch spezifische Antik{\"o}rper gegen dieses Protein kann RNase\&\#61472;P-Aktivit{\"a}t aus Weizen-Extrakt pr{\"a}zipitiert werden.}, subject = {Plastide}, language = {de} } @article{KrehanHeubeckMenzeletal.2012, author = {Krehan, Mario and Heubeck, Christian and Menzel, Nicolas and Seibel, Peter and Sch{\"o}n, Astrid}, title = {RNase MRP RNA and RNase P activity in plants are associated with a Pop1p containing complex}, series = {Nucleic Acids Research}, volume = {40}, journal = {Nucleic Acids Research}, number = {16}, doi = {10.1093/nar/gks476}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130648}, pages = {7956- 7966}, year = {2012}, abstract = {RNase P processes the 5'-end of tRNAs. An essential catalytic RNA has been demonstrated in Bacteria, Archaea and the nuclei of most eukaryotes; an organism-specific number of proteins complement the holoenzyme. Nuclear RNase P from yeast and humans is well understood and contains an RNA, similar to the sister enzyme RNase MRP. In contrast, no protein subunits have yet been identified in the plant enzymes, and the presence of a nucleic acid in RNase P is still enigmatic. We have thus set out to identify and characterize the subunits of these enzymes in two plant model systems. Expression of the two known Arabidopsis MRP RNA genes in vivo was verified. The first wheat MRP RNA sequences are presented, leading to improved structure models for plant MRP RNAs. A novel mRNA encoding the central RNase P/MRP protein Pop1p was identified in Arabidopsis, suggesting the expression of distinct protein variants from this gene in vivo. Pop1p-specific antibodies precipitate RNase P activity and MRP RNAs from wheat extracts. Our results provide evidence that in plants, Pop1p is associated with MRP RNAs and with the catalytic subunit of RNase P, either separately or in a single large complex.}, language = {en} }