@phdthesis{Kuhlmann2015, author = {Kuhlmann, Matthias}, title = {Sulfur-functional polymers for biomedical applications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119832}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Aim of this thesis was to combine the versatility of sulfur-chemistry, regarding redox-sensitivity as well as chemo- and site-specific conjugation, with multifunctionality of poly(glycidol)s as an alternative to poly(ethylene glycol). First the homo- and copolymerizations of EEGE and AGE were performed with respect to molar-mass distribution and reaction kinetics. A detailed study was given, varying the polymerization parameters such as DP, counter ion, solvent and monomer influence. It can be concluded that in general the rates for all polymerizations are higher using K+, in contrast to Cs+, as counter ion for the active alkoxide species. Unfortunately, K+ as counter ion commonly leads to a reduced control over polymer dispersity. In this thesis it was shown that the broad molar-mass distributions might be reduced by adding the monomer in a step-wise manner. In experiments with a syringe pump, for continuously adding the monomer, a significant reduction of the dispersities could be found using K+ as counter ion. In analogy to the oxyanionic polymerization of epoxides, the polymerization of episulfides via a thioanionic mechanism with various DPs was successful with thiols/DBU as initiator. In most experiments bimodality could be observed due to the dimerization, caused by oxidation processes by introduced oxygen during synthesis. Reducing this was successful by modifying the degassing procedure, e.g. repeated degassing cycles after each step, i.e. initiation, monomer addition and quenching. Unfortunately, it was not always possible to completely avoid the dimerization due to oxidation. Thiophenol, butanethiol, mercaptoethanol and dithiothreitol were used as thiol initiators, all being capable to initiate the polymerization. With the prediction and the narrow molar-mass distributions, the living character of the polymerization is therefore indicated. Homo- and copolymers of poly(glycidol) were used to functionalize these polymers with side-chains bearing amines, thiols, carboxylic acids and cysteines. The cysteine side-chains were obtained using a newly synthesized thiol-functional thiazolidine. For this, cysteine was protected using a condensation reaction with acetone yielding a dimethyl-substituted thiazolidine. Protection of the ring-amine was obtained via a mixed-anhydride route using formic acid and acetic anhydride. The carboxylic acid of 2,2-dimethylthiazolidine-4-carboxylic acid was activated with CDI and cysteamine attached. The obtained crystalline mercaptothiazolidine was subjected to thiol-ene click chemistry with allyl-functional poly(glycidol). A systematic comparison of thermal- versus photo-initiation showed a much higher yield and reaction rate for the UV-light mediated thiol-ene synthesis with DMPA as photo-initiator. Hydrolysis of the protected thiazolidine-functionalities was obtained upon heating the samples for 5 d at 70 °C in 0.1 M HCl. Dialysis against acetic acid lead to cysteine-functional poly(glycidol)s, storable as the acetate salt even under non-inert atmosphere. An oxidative TNBSA assay was developed to quantify the cysteine-content without the influence of the thiol-functionality. A cooperation partner coupled C-terminal thioester peptides with the cysteine-functional poly(glycidol)s and showed the good accessibility and reactivity of the cysteines along the backbone. SDS-PAGE, HPLC and MALDI-ToF measurements confirmed the successful coupling.}, subject = {Polymer}, language = {en} } @article{WeisShanKuhlmannetal.2018, author = {Weis, Matthias and Shan, Junwen and Kuhlmann, Matthias and Jungst, Tomasz and Tessmar, J{\"o}rg and Groll, J{\"u}rgen}, title = {Evaluation of hydrogels based on oxidized hyaluronic acid for bioprinting}, series = {Gels}, volume = {4}, journal = {Gels}, number = {4}, issn = {2310-2861}, doi = {10.3390/gels4040082}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197600}, pages = {82}, year = {2018}, abstract = {In this study, we evaluate hydrogels based on oxidized hyaluronic acid, cross-linked with adipic acid dihydrazide, for their suitability as bioinks for 3D bioprinting. Aldehyde containing hyaluronic acid (AHA) is synthesized and cross-linked via Schiff Base chemistry with bifunctional adipic acid dihydrazide (ADH) to form a mechanically stable hydrogel with good printability. Mechanical and rheological properties of the printed and casted hydrogels are tunable depending on the concentrations of AHA and ADH cross-linkers.}, language = {en} }