@article{LueckBenderOttetal.1991, author = {L{\"u}ck, P. Christian and Bender, Larisa and Ott, Manfred and Helbig, J{\"u}rgen H. and Hacker, J{\"o}rg}, title = {Analysis of Legionella pneumophila serogroup 6 strains isolated from a hospital warm water supply over a three-year period by using genomic long-range mapping techniques and monoclonal antibodies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40392}, year = {1991}, abstract = {Over a period of 3 years, Legionella pneumophila serogroup 6 strains were isolated from warm water outlets and dental units in the Dental Faculty and from the Surgery and Internal Medicine Clinics at the University of Dresden, Dresden, Germany. In the bacteriological unit of the above-mentioned facility, L. pneumophila serogroups 3 and 12 were grown frl,)m warm water specimens. The medical facilities are located in separate buildings connected with a ring pipe warm water system. All L. pneumophila serogroup 6 strains isolated from the warm water supply reacted with a serogroup-specific monoclonal antibody, but not with two other monoclonal antibodies which are subgroup specific, reacting with other serogroup 6 strains. The NolI genomic profiles obtained by pulsed-field gel electrophoresis of 25 serogroup 6 strains isolated from the Dental Faculty over a 3-year period, 1 isolate from the Internal Medicine Clinic, and 4 strains from the Surgery Clinic were identical. Furthermore, all these strains hybridized with a 3OO-kb NolI fragment when a legiolysin (lIy)-specific DNA probe was used. The NolI pattern, however, differed from those of six serogroup 6 strains of other origins, one serogroup 12 strain from the bacteriological unit, and another six unrelated strains of serogroups other than serogroup 6. L. pneumophila serogroup 6 strains which can be divided into only two subgroups by the use of monoclonal antibodies are differentiated in at least six Noli cleavage types obtained by pulsed-field electrophoresis.}, language = {en} } @article{TschaepeBenderOttetal.1992, author = {Tsch{\"a}pe, Helmut and Bender, Larisa and Ott, Manfred and Wittig, Walter and Hacker, J{\"o}rg}, title = {Restriction fragments length polymorphism and virulence pattern of the veterinary pathogen Escherichia coli O139:K82:H1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86131}, year = {1992}, abstract = {Escherichia coli 0139: K82: H1 strains originating from outbreaks and single cases of oedema disease in pigs were characterized by their genomic restriction fragment length polymorphism (RFLP), their virulence pattern, and by the occurrence as well as the genomic distribution of the determinants for hemolysin (hly) and verotoxins (shiga-like toxins; sltI, sltII). Whereas the RFLPs revealed considerable variation among the E. coli 0139: K82: H1 isolates depending the origin and epidemic source of the strains, the virulence gene slt II was found to be present in nearly all strains in a particular chromosomal region. Similar to RFLPs, the plasmid profiles are useful for epidemiological analysis.}, subject = {Escherichia coli}, language = {en} } @article{HackerOttBlumetal.1992, author = {Hacker, J{\"o}rg and Ott, Manfred and Blum, Gabriele and Marre, Reinhard and Heesemann, J{\"u}rgen and Tsch{\"a}pe, Helmut and Goebel, Werner}, title = {Genetics of Escherichia coli uropathogenicity: Analysis of the O6:K15:H31 isolate 536}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71578}, year = {1992}, abstract = {E. coli strain 536 (06: K15: H31) isolated from a case of acute pyelonephritis, expresses S-fimbrial adhesins, P-related fimbriae, common type I fimbriae, and hemolysins. The respective chromosomally encoded determinants were cloned by constructing a genomic library of this strain. Furthermore, the strain produces the iron uptake substance, enterocheline, damages HeLa cells, and behaves in a serum-resistant mode. Genetic analysis of spontaneously arising non-hemolytic variants revealed that some of the virulence genes were physically linked to large unstable DNA regions, termed "pathogenicity islands", which were mapped in the respective positions on the E. coli K-12linkage map. By comparing the wild type strain and mutants in in vitro and in vivo assays, virulence features have been evaluated. In addition, a regulatory cross talk between adhesin determinants was found for the wild-type isolate. This particular mode of virulence regulation is missing in the mutant strain.}, subject = {Escherichia coli}, language = {en} } @article{HackerOttWintermeyeretal.1993, author = {Hacker, J{\"o}rg and Ott, Manfred and Wintermeyer, Eva and Ludwig, Birgit and Fischer, Gunter}, title = {Analysis of virulence factors of Legionella pneumophila.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70620}, year = {1993}, abstract = {Legionella pneumophila, the causative agent of Legionnaires' disease is a facultative intracellular bacterium, which in the course of human infection multiplies in lung macrophages predominantly manifesting as pneumonia. The natural habitat of Legionella is found in sweet water reservoirs and man-made water systems. Virulent L. pneumophila spontaneously convert to an avirulent status at a high frequency. Genetic approaches have led to the identification of various L. pneumophila genes. The mip (macrophage infectivity potentiator) determinant remains at present the sole established virulence factor. The Mip protein exhibits activity of a peptidyl prolyl cis trans isomerase (PPiase), an enzyme which is able to bind the immunosuppressant FK506 and is involved in protein folding. The recently cloned major outer membrane protein (MOMP) could play a role in the uptake of legionellae by macrophages. Cellular models are useful in studying the intracellular replication of legionellae in eukaryotic cells. Human celllines and protozoan models are appropriate for this purpose. By using U 937 macrophage-like cells and Acanthamoeba castellanii as hosts, we could discriminate virulent and avirulent L. pneumophila variants since only the virulent strain was capable of intracellular growth at 37 oc. By using these systems we further demonstrated that a hemolytic factor cloned and characterized in our laboratory, legiolysin (lly), had no influence on the intracellular growth of L. pneumophila.}, subject = {Legionella pneumophila}, language = {en} }