@article{FeldbauerSchlegelWeissbeckeretal.2016, author = {Feldbauer, Katrin and Schlegel, Jan and Weissbecker, Juliane and Sauer, Frank and Wood, Phillip G. and Bamberg, Ernst and Terpitz, Ulrich}, title = {Optochemokine Tandem for Light-Control of Intracellular Ca\(^{2+}\)}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0165344}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178921}, year = {2016}, abstract = {An optochemokine tandem was developed to control the release of calcium from endosomes into the cytosol by light and to analyze the internalization kinetics of G-protein coupled receptors (GPCRs) by electrophysiology. A previously constructed rhodopsin tandem was re-engineered to combine the light-gated Ca\(^{2+}\)-permeable cation channel Channelrhodopsin-2(L132C), CatCh, with the chemokine receptor CXCR4 in a functional tandem protein tCXCR4/CatCh. The GPCR was used as a shuttle protein to displace CatCh from the plasma membrane into intracellular areas. As shown by patch-clamp measurements and confocal laser scanning microscopy, heterologously expressed tCXCR4/CatCh was internalized via the endocytic SDF1/CXCR4 signaling pathway. The kinetics of internalization could be followed electrophysiologically via the amplitude of the CatCh signal. The light-induced release of Ca\(^{2+}\) by tandem endosomes into the cytosol via CatCh was visualized using the Ca\(^{2+}\)-sensitive dyes rhod2 and rhod2-AM showing an increase of intracellular Ca\(^{2+}\) in response to light.}, language = {en} } @article{ZieglerWeissSchmittetal.2017, author = {Ziegler, Sabrina and Weiss, Esther and Schmitt, Anna-Lena and Schlegel, Jan and Burgert, Anne and Terpitz, Ulrich and Sauer, Markus and Moretta, Lorenzo and Sivori, Simona and Leonhardt, Ines and Kurzai, Oliver and Einsele, Hermann and Loeffler, Juergen}, title = {CD56 Is a Pathogen Recognition Receptor on Human Natural Killer Cells}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {6138}, doi = {10.1038/s41598-017-06238-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170637}, year = {2017}, abstract = {Aspergillus (A.) fumigatus is an opportunistic fungal mold inducing invasive aspergillosis (IA) in immunocompromised patients. Although antifungal activity of human natural killer (NK) cells was shown in previous studies, the underlying cellular mechanisms and pathogen recognition receptors (PRRs) are still unknown. Using flow cytometry we were able to show that the fluorescence positivity of the surface receptor CD56 significantly decreased upon fungal contact. To visualize the interaction site of NK cells and A. fumigatus we used SEM, CLSM and dSTORM techniques, which clearly demonstrated that NK cells directly interact with A. fumigatus via CD56 and that CD56 is re-organized and accumulated at this interaction site time-dependently. The inhibition of the cytoskeleton showed that the receptor re-organization was an active process dependent on actin re-arrangements. Furthermore, we could show that CD56 plays a role in the fungus mediated NK cell activation, since blocking of CD56 surface receptor reduced fungal mediated NK cell activation and reduced cytokine secretion. These results confirmed the direct interaction of NK cells and A. fumigatus, leading to the conclusion that CD56 is a pathogen recognition receptor. These findings give new insights into the functional role of CD56 in the pathogen recognition during the innate immune response.}, language = {en} } @article{BecamWalterBurgertetal.2017, author = {Becam, J{\´e}r{\^o}me and Walter, Tim and Burgert, Anne and Schlegel, Jan and Sauer, Markus and Seibel, J{\"u}rgen and Schubert-Unkmeir, Alexandra}, title = {Antibacterial activity of ceramide and ceramide analogs against pathogenic Neisseria}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-18071-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159367}, pages = {17627}, year = {2017}, abstract = {Certain fatty acids and sphingoid bases found at mucosal surfaces are known to have antibacterial activity and are thought to play a more direct role in innate immunity against bacterial infections. Herein, we analysed the antibacterial activity of sphingolipids, including the sphingoid base sphingosine as well as short-chain C\(_{6}\) and long-chain C\(_{16}\)-ceramides and azido-functionalized ceramide analogs against pathogenic Neisseriae. Determination of the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) demonstrated that short-chain ceramides and a ω-azido-functionalized C\(_{6}\)-ceramide were active against Neisseria meningitidis and N. gonorrhoeae, whereas they were inactive against Escherichia coli and Staphylococcus aureus. Kinetic assays showed that killing of N. meningitidis occurred within 2 h with ω-azido-C\(_{6}\)-ceramide at 1 X the MIC. Of note, at a bactericidal concentration, ω-azido-C\(_{6}\)-ceramide had no significant toxic effect on host cells. Moreover, lipid uptake and localization was studied by flow cytometry and confocal laser scanning microscopy (CLSM) and revealed a rapid uptake by bacteria within 5 min. CLSM and super-resolution fluorescence imaging by direct stochastic optical reconstruction microscopy demonstrated homogeneous distribution of ceramide analogs in the bacterial membrane. Taken together, these data demonstrate the potent bactericidal activity of sphingosine and synthetic short-chain ceramide analogs against pathogenic Neisseriae.}, language = {en} } @article{SchlegelPetersDooseetal.2019, author = {Schlegel, Jan and Peters, Simon and Doose, S{\"o}ren and Schubert-Unkmeir, Alexandra and Sauer, Markus}, title = {Super-resolution microscopy reveals local accumulation of plasma membrane gangliosides at Neisseria meningitidis Invasion Sites}, series = {Frontiers in Cell and Developmental Biology}, volume = {7}, journal = {Frontiers in Cell and Developmental Biology}, number = {194}, doi = {10.3389/fcell.2019.00194}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201639}, year = {2019}, abstract = {Neisseria meningitidis (meningococcus) is a Gram-negative bacterium responsible for epidemic meningitis and sepsis worldwide. A critical step in the development of meningitis is the interaction of bacteria with cells forming the blood-cerebrospinal fluid barrier, which requires tight adhesion of the pathogen to highly specialized brain endothelial cells. Two endothelial receptors, CD147 and the β2-adrenergic receptor, have been found to be sequentially recruited by meningococci involving the interaction with type IV pilus. Despite the identification of cellular key players in bacterial adhesion the detailed mechanism of invasion is still poorly understood. Here, we investigated cellular dynamics and mobility of the type IV pilus receptor CD147 upon treatment with pili enriched fractions and specific antibodies directed against two extracellular Ig-like domains in living human brain microvascular endothelial cells. Modulation of CD147 mobility after ligand binding revealed by single-molecule tracking experiments demonstrates receptor activation and indicates plasma membrane rearrangements. Exploiting the binding of Shiga (STxB) and Cholera toxin B (CTxB) subunits to the two native plasma membrane sphingolipids globotriaosylceramide (Gb3) and raft-associated monosialotetrahexosylganglioside GM1, respectively, we investigated their involvement in bacterial invasion by super-resolution microscopy. Structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM) unraveled accumulation and coating of meningococci with GM1 upon cellular uptake. Blocking of CTxB binding sites did not impair bacterial adhesion but dramatically reduced bacterial invasion efficiency. In addition, cell cycle arrest in G1 phase induced by serum starvation led to an overall increase of GM1 molecules in the plasma membrane and consequently also in bacterial invasion efficiency. Our results will help to understand downstream signaling events after initial type IV pilus-host cell interactions and thus have general impact on the development of new therapeutics targeting key molecules involved in infection.}, language = {en} } @article{SchlegelSauer2020, author = {Schlegel, Jan and Sauer, Markus}, title = {Hochaufgel{\"o}ste Visualisierung einzelner Molek{\"u}le auf ganzen Zellen}, series = {BIOspektrum}, volume = {7}, journal = {BIOspektrum}, issn = {0947-0867}, doi = {10.1007/s12268-020-1501-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232365}, pages = {736-738}, year = {2020}, abstract = {Biological systems are dynamic and three-dimensional but many techniques allow only static and two-dimensional observation of cells. We used three-dimensional (3D) lattice light-sheet single-molecule localization microscopy (dSTORM) to investigate the complex interactions and distribution of single molecules in the plasma membrane of whole cells. Different receptor densities of the adhesion receptor CD56 at different parts of the cell highlight the importance and need of three-dimensional observation and analysis techniques.}, language = {de} } @article{GoetzKunzFinketal.2020, author = {G{\"o}tz, Ralph and Kunz, Tobias C. and Fink, Julian and Solger, Franziska and Schlegel, Jan and Seibel, J{\"u}rgen and Kozjak-Pavlovic, Vera and Rudel, Thomas and Sauer, Markus}, title = {Nanoscale imaging of bacterial infections by sphingolipid expansion microscopy}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-19897-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231248}, year = {2020}, abstract = {Expansion microscopy (ExM) enables super-resolution imaging of proteins and nucleic acids on conventional microscopes. However, imaging of details of the organization of lipid bilayers by light microscopy remains challenging. We introduce an unnatural short-chain azide- and amino-modified sphingolipid ceramide, which upon incorporation into membranes can be labeled by click chemistry and linked into hydrogels, followed by 4x to 10x expansion. Confocal and structured illumination microscopy (SIM) enable imaging of sphingolipids and their interactions with proteins in the plasma membrane and membrane of intracellular organelles with a spatial resolution of 10-20nm. As our functionalized sphingolipids accumulate efficiently in pathogens, we use sphingolipid ExM to investigate bacterial infections of human HeLa229 cells by Neisseria gonorrhoeae, Chlamydia trachomatis and Simkania negevensis with a resolution so far only provided by electron microscopy. In particular, sphingolipid ExM allows us to visualize the inner and outer membrane of intracellular bacteria and determine their distance to 27.6 +/- 7.7nm. Imaging of lipid bilayers using light microscopy is challenging. Here the authors label cells using a short chain click-compatible ceramide to visualize mammalian and bacterial membranes with expansion microscopy.}, language = {en} } @article{WeissSchlegelTerpitzetal.2020, author = {Weiss, Esther and Schlegel, Jan and Terpitz, Ulrich and Weber, Michael and Linde, J{\"o}rg and Schmitt, Anna-Lena and H{\"u}nniger, Kerstin and Marischen, Lothar and Gamon, Florian and Bauer, Joachim and L{\"o}ffler, Claudia and Kurzai, Oliver and Morton, Charles Oliver and Sauer, Markus and Einsele, Hermann and Loeffler, Juergen}, title = {Reconstituting NK Cells After Allogeneic Stem Cell Transplantation Show Impaired Response to the Fungal Pathogen Aspergillus fumigatus}, series = {Frontiers in Immunology}, volume = {11}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2020.02117}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212581}, year = {2020}, abstract = {Delayed natural killer (NK) cell reconstitution after allogeneic stem cell transplantation (alloSCT) is associated with a higher risk of developing invasive aspergillosis. The interaction of NK cells with the human pathogen Aspergillus (A.) fumigatus is mediated by the fungal recognition receptor CD56, which is relocated to the fungal interface after contact. Blocking of CD56 signaling inhibits the fungal mediated chemokine secretion of MIP-1α, MIP-1β, and RANTES and reduces cell activation, indicating a functional role of CD56 in fungal recognition. We collected peripheral blood from recipients of an allograft at defined time points after alloSCT (day 60, 90, 120, 180). NK cells were isolated, directly challenged with live A. fumigatus germ tubes, and cell function was analyzed and compared to healthy age and gender-matched individuals. After alloSCT, NK cells displayed a higher percentage of CD56\(^{bright}\)CD16\(^{dim}\) cells throughout the time of blood collection. However, CD56 binding and relocalization to the fungal contact side were decreased. We were able to correlate this deficiency to the administration of corticosteroid therapy that further negatively influenced the secretion of MIP-1α, MIP-1β, and RANTES. As a consequence, the treatment of healthy NK cells ex vivo with corticosteroids abrogated chemokine secretion measured by multiplex immunoassay. Furthermore, we analyzed NK cells regarding their actin cytoskeleton by Structured Illumination Microscopy (SIM) and flow cytometry and demonstrate an actin dysfunction of NK cells shown by reduced F-actin content after fungal co-cultivation early after alloSCT. This dysfunction remains until 180 days post-alloSCT, concluding that further actin-dependent cellular processes may be negatively influenced after alloSCT. To investigate the molecular pathomechansism, we compared CD56 receptor mobility on the plasma membrane of healthy and alloSCT primary NK cells by single-molecule tracking. The results were very robust and reproducible between tested conditions which point to a different molecular mechanism and emphasize the importance of proper CD56 mobility.}, language = {en} } @phdthesis{Schlegel2021, author = {Schlegel, Jan}, title = {Super-Resolution Microscopy of Sphingolipids and Protein Nanodomains}, doi = {10.25972/OPUS-22959}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229596}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The development of cellular life on earth is coupled to the formation of lipid-based biological membranes. Although many tools to analyze their biophysical properties already exist, their variety and number is still relatively small compared to the field of protein studies. One reason for this, is their small size and complex assembly into an asymmetric tightly packed lipid bilayer showing characteristics of a two-dimensional heterogenous fluid. Since membranes are capable to form dynamic, nanoscopic domains, enriched in sphingolipids and cholesterol, their detailed investigation is limited to techniques which access information below the diffraction limit of light. In this work, I aimed to extend, optimize and compare three different labeling approaches for sphingolipids and their subsequent analysis by the single-molecule localization microscopy (SMLM) technique direct stochastic optical reconstruction microscopy (dSTORM). First, I applied classical immunofluorescence by immunoglobulin G (IgG) antibody labeling to detect and quantify sphingolipid nanodomains in the plasma membrane of eukaryotic cells. I was able to identify and characterize ceramide-rich platforms (CRPs) with a size of ~ 75nm on the basal and apical membrane of different cell lines. Next, I used click-chemistry to characterize sphingolipid analogs in living and fixed cells. By using a combination of fluorescence microscopy and anisotropy experiments, I analyzed their accessibility and configuration in the plasma membrane, respectively. Azide-modified, short fatty acid side chains, were accessible to membrane impermeable dyes and localized outside the hydrophobic membrane core. In contrast, azide moieties at the end of longer fatty acid side chains were less accessible and conjugated dyes localized deeper within the plasma membrane. By introducing photo-crosslinkable diazirine groups or chemically addressable amine groups, I developed methods to improve their immobilization required for dSTORM. Finally, I harnessed the specific binding characteristics of non-toxic shiga toxin B subunits (STxBs) and cholera toxin B subunits (CTxBs) to label and quantify glycosphingolipid nanodomains in the context of Neisseria meningitidis infection. Under pyhsiological conditions, these glycosphingolipids were distributed homogenously in the plasma membrane but upon bacterial infection CTxB detectable gangliosides accumulated around invasive Neisseria meningitidis. I was able to highlight the importance of cell cycle dependent glycosphingolipid expression for the invasion process. Blocking membrane accessible sugar headgroups by pretreatment with CTxB significantly reduced the number of invasive bacteria which confirmed the importance of gangliosides for bacterial uptake into cells. Based on my results, it can be concluded that labeling of sphingolipids should be carefully optimized depending on the research question and applied microscopy technique. In particular, I was able to develop new tools and protocols which enable the characterization of sphingolipid nanodomains by dSTORM for all three labeling approaches.}, subject = {Sphingolipide}, language = {en} } @article{PetersKaiserFinketal.2021, author = {Peters, Simon and Kaiser, Lena and Fink, Julian and Schumacher, Fabian and Perschin, Veronika and Schlegel, Jan and Sauer, Markus and Stigloher, Christian and Kleuser, Burkhard and Seibel, Juergen and Schubert-Unkmeir, Alexandra}, title = {Click-correlative light and electron microscopy (click-AT-CLEM) for imaging and tracking azido-functionalized sphingolipids in bacteria}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-83813-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259147}, pages = {4300}, year = {2021}, abstract = {Sphingolipids, including ceramides, are a diverse group of structurally related lipids composed of a sphingoid base backbone coupled to a fatty acid side chain and modified terminal hydroxyl group. Recently, it has been shown that sphingolipids show antimicrobial activity against a broad range of pathogenic microorganisms. The antimicrobial mechanism, however, remains so far elusive. Here, we introduce 'click-AT-CLEM', a labeling technique for correlated light and electron microscopy (CLEM) based on the super-resolution array tomography (srAT) approach and bio-orthogonal click chemistry for imaging of azido-tagged sphingolipids to directly visualize their interaction with the model Gram-negative bacterium Neisseria meningitidis at subcellular level. We observed ultrastructural damage of bacteria and disruption of the bacterial outer membrane induced by two azido-modified sphingolipids by scanning electron microscopy and transmission electron microscopy. Click-AT-CLEM imaging and mass spectrometry clearly revealed efficient incorporation of azido-tagged sphingolipids into the outer membrane of Gram-negative bacteria as underlying cause of their antimicrobial activity.}, language = {en} } @article{HaackBaikerSchlegeletal.2021, author = {Haack, Stephanie and Baiker, Sarah and Schlegel, Jan and Sauer, Markus and Sparwasser, Tim and Langenhorst, Daniela and Beyersdorf, Niklas}, title = {Superagonistic CD28 stimulation induces IFN-γ release from mouse T helper 1 cells in vitro and in vivo}, series = {European Journal of Immunology}, volume = {51}, journal = {European Journal of Immunology}, number = {3}, doi = {10.1002/eji.202048803}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239028}, pages = {738 -- 741}, year = {2021}, abstract = {Like human Th1 cells, mouse Th1 cells also secrete IFN-γ upon stimulation with a superagonistic anti-CD28 monoclonal antibody (CD28-SA). Crosslinking of the CD28-SA via FcR and CD40-CD40L interactions greatly increased IFN-γ release. Our data stress the utility of the mouse as a model organism for immune responses in humans.}, language = {en} }