@article{SaidPolatSteinetal.2012, author = {Said, Harun M. and Polat, Buelent and Stein, Susanne and Guckenberger, Mathias and Hagemann, Carsten and Staab, Adrian and Katzer, Astrid and Anacker, Jelena and Flentje, Michael and Vordermark, Dirk}, title = {Inhibition of N-Myc down regulated gene 1 in in vitro cultured human glioblastoma cells}, series = {World Journal of Clinical Oncology}, volume = {3}, journal = {World Journal of Clinical Oncology}, number = {7}, doi = {10.5306/wjco.v3.i7.104}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123385}, pages = {104-110}, year = {2012}, abstract = {AIM: To study short dsRNA oligonucleotides (siRNA) as a potent tool for artificially modulating gene expression of N-Myc down regulated gene 1 (NDRG1) gene induced under different physiological conditions (Normoxia and hypoxia) modulating NDRG1 transcription, mRNA stability and translation. METHODS: A cell line established from a patient with glioblastoma multiforme. Plasmid DNA for transfections was prepared with the Endofree Plasmid Maxi kit. From plates containing 5 x 10(7) cells, nuclear extracts were prepared according to previous protocols. The pSUPER-NDRG1 vectors were designed, two sequences were selected from the human NDRG1 cDNA (5'-GCATTATTGGCATGGGAAC-3' and 5'-ATGCAGAGTAACGTGGAAG-3'. reverse transcription polymerase chain reaction was performed using primers designed using published information on -actin and hypoxia-inducible factor (HIF)-1 mRNA sequences in GenBank. NDRG1 mRNA and protein level expression results under different conditions of hypoxia or reoxygenation were compared to aerobic control conditions using the Mann-Whitney U test. Reoxygenation values were also compared to the NDRG1 levels after 24 h of hypoxia (P < 0.05 was considered significant). RESULTS: siRNA- and iodoacetate (IAA)-mediated downregulation of NDRG1 mRNA and protein expression in vitro in human glioblastoma cell lines showed a nearly complete inhibition of NDRG1 expression when compared to the results obtained due to the inhibitory role of glycolysis inhibitor IAA. Hypoxia responsive elements bound by nuclear HIF-1 in human glioblastoma cells in vitro under different oxygenation conditions and the clearly enhanced binding of nuclear extracts from glioblastoma cell samples exposed to extreme hypoxic conditions confirmed the HIF-1 Western blotting results. CONCLUSION: NDRG1 represents an additional diagnostic marker for brain tumor detection, due to the role of hypoxia in regulating this gene, and it can represent a potential target for tumor treatment in human glioblastoma. The siRNA method can represent an elegant alternative to modulate the expression of the hypoxia induced NDRG1 gene and can help to monitor the development of the cancer disease treatment outcome through monitoring the expression of this gene in the patients undergoing the different therapeutic treatment alternatives available nowadays.}, language = {en} } @article{SteinmannPaeleckeHabermannGeinitzetal.2012, author = {Steinmann, Diana and Paelecke-Habermann, Yvonne and Geinitz, Hans and Aschoff, Raimund and Bayerl, Anja and B{\"o}lling, Tobias and Bosch, Elisabeth and Bruns, Frank and Eichenseder-Seiss, Ute and Gerstein, Johanna and Gharbi, Nadine and Hagg, Juliane and Hipp, Matthias and Kleff, Irmgard and M{\"u}ller, Axel and Sch{\"a}fer, Christof and Schleicher, Ursula and Sehlen, Susanne and Theodorou, Marilena and Wypior, Hans-Joachim and Zehentmayr, Franz and van Oorschot, Birgitt and Vordermark, Dirk}, title = {Prospective evaluation of quality of life effects in patients undergoing palliative radiotherapy for brain metastases}, series = {BMC Cancer}, volume = {12}, journal = {BMC Cancer}, number = {283}, doi = {10.1186/1471-2407-12-283}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135254}, year = {2012}, abstract = {Background: Recently published results of quality of life (QoL) studies indicated different outcomes of palliative radiotherapy for brain metastases. This prospective multi-center QoL study of patients with brain metastases was designed to investigate which QoL domains improve or worsen after palliative radiotherapy and which might provide prognostic information. Methods: From 01/2007-01/2009, n=151 patients with previously untreated brain metastases were recruited at 14 centers in Germany and Austria. Most patients (82 \%) received whole-brain radiotherapy. QoL was measured with the EORTC-QLQ-C15-PAL and brain module BN20 before the start of radiotherapy and after 3 months. Results: At 3 months, 88/142 (62 \%) survived. Nine patients were not able to be followed up. 62 patients (70.5 \% of 3-month survivors) completed the second set of questionnaires. Three months after the start of radiotherapy QoL deteriorated significantly in the areas of global QoL, physical function, fatigue, nausea, pain, appetite loss, hair loss, drowsiness, motor dysfunction, communication deficit and weakness of legs. Although the use of corticosteroid at 3 months could be reduced compared to pre-treatment (63 \% vs. 37 \%), the score for headaches remained stable. Initial QoL at the start of treatment was better in those alive than in those deceased at 3 months, significantly for physical function, motor dysfunction and the symptom scales fatigue, pain, appetite loss and weakness of legs. In a multivariate model, lower Karnofsky performance score, higher age and higher pain ratings before radiotherapy were prognostic of 3-month survival. Conclusions: Moderate deterioration in several QoL domains was predominantly observed three months after start of palliative radiotherapy for brain metastases. Future studies will need to address the individual subjective benefit or burden from such treatment. Baseline QoL scores before palliative radiotherapy for brain metastases may contain prognostic information.}, language = {en} } @article{WohllebenScherzadGuettleretal.2015, author = {Wohlleben, Gisela and Scherzad, Agmal and G{\"u}ttler, Antje and Vordermark, Dirk and Kuger, Sebastian and Flentje, Michael and Polat, Buelent}, title = {Influence of hypoxia and irradiation on osteopontin expression in head and neck cancer and glioblastoma cell lines}, series = {Radiation Oncology}, volume = {10}, journal = {Radiation Oncology}, number = {167}, doi = {10.1186/s13014-015-0473-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125746}, year = {2015}, abstract = {Background Tumor hypoxia is a known risk factor for reduced response to radiotherapy. The evaluation of noninvasive methods for the detection of hypoxia is therefore of interest. Osteopontin (OPN) has been discussed as an endogenous hypoxia biomarker. It is overexpressed in many cancers and is involved in tumor progression and metastasis. Methods To examine the influence of hypoxia and irradiation on osteopontin expression we used different cell lines (head and neck cancer (Cal27 and FaDu) and glioblastoma multiforme (U251 and U87)). Cells were treated with hypoxia for 24 h and were then irradiated with doses of 2 and 8 Gy. Osteopontin expression was analyzed on mRNA level by quantitative real-time RT-PCR (qPCR) and on protein level by western blot. Cell culture supernatants were evaluated for secreted OPN by ELISA. Results Hypoxia caused an increase in osteopontin protein expression in all cell lines. In Cal27 a corresponding increase in OPN mRNA expression was observed. In contrast the other cell lines showed a reduced mRNA expression under hypoxic conditions. After irradiation OPN mRNA expression raised slightly in FaDu and U87 cells while it was reduced in U251 and stable in Cal27 cells under normoxia. The combined treatment (hypoxia and irradiation) led to a slight increase of OPN mRNA after 2 Gy in U251 (24 h) and in U87 (24 and 48 h) cell lines falling back to base line after 8 Gy. This effect was not seen in Cal27 or in FaDu cells. Secreted OPN was detected only in the two glioblastoma cell lines with reduced protein levels under hypoxic conditions. Again the combined treatment resulted in a minor increase in OPN secretion 48 hours after irradiation with 8 Gy. Conclusion Osteopontin expression is strongly modulated by hypoxia and only to a minor extent by irradiation. Intracellular OPN homeostasis seems to vary considerably between cell lines. This may explain the partly conflicting results concerning response prediction and prognosis in the clinical setting.}, language = {en} } @article{PolatKaiserWohllebenetal.2017, author = {Polat, B{\"u}lent and Kaiser, Philipp and Wohlleben, Gisela and Gehrke, Thomas and Scherzad, Agmal and Scheich, Matthias and Malzahn, Uwe and Fischer, Thomas and Vordermark, Dirk and Flentje, Michael}, title = {Perioperative changes in osteopontin and TGFβ1 plasma levels and their prognostic impact for radiotherapy in head and neck cancer}, series = {BMC Cancer}, volume = {17}, journal = {BMC Cancer}, number = {6}, doi = {10.1186/s12885-016-3024-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157529}, year = {2017}, abstract = {Background: In head and neck cancer little is known about the kinetics of osteopontin (OPN) expression after tumor resection. In this study we evaluated the time course of OPN plasma levels before and after surgery. Methods: Between 2011 and 2013 41 consecutive head and neck cancer patients were enrolled in a prospective study (group A). At different time points plasma samples were collected: T0) before, T1) 1 day, T2) 1 week and T3) 4 weeks after surgery. Osteopontin and TGFβ1 plasma concentrations were measured with a commercial ELISA system. Data were compared to 131 head and neck cancer patients treated with primary (n = 42) or postoperative radiotherapy (n = 89; group B1 and B2). Results: A significant OPN increase was seen as early as 1 day after surgery (T0 to T1, p < 0.01). OPN levels decreased to base line 3-4 weeks after surgery. OPN values were correlated with postoperative TGFβ1 expression suggesting a relation to wound healing. Survival analysis showed a significant benefit for patients with lower OPN levels both in the primary and postoperative radiotherapy group (B1: 33 vs 11.5 months, p = 0.017, B2: median not reached vs 33.4, p = 0.031). TGFβ1 was also of prognostic significance in group B1 (33.0 vs 10.7 months, p = 0.003). Conclusions: Patients with head and neck cancer showed an increase in osteopontin plasma levels directly after surgery. Four weeks later OPN concentration decreased to pre-surgery levels. This long lasting increase was presumably associated to wound healing. Both pretherapeutic osteopontin and TGFβ1 had prognostic impact.}, language = {en} }