@article{BratengeierHerzogWegeneretal.2017, author = {Bratengeier, Klaus and Herzog, Barbara and Wegener, Sonja and Holubyev, Kostyantyn}, title = {Finer leaf resolution and steeper beam edges using a virtual isocentre in concurrence to PTV-shaped collimators in standard distance - a planning study}, series = {Radiation Oncology}, volume = {12}, journal = {Radiation Oncology}, number = {88}, doi = {10.1186/s13014-017-0826-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157543}, year = {2017}, abstract = {Purpose: Investigation of a reduced source to target distance to improve organ at risk sparing during stereotactic irradiation (STX). Methods: The authors present a planning study with perfectly target-volume adapted collimator compared with multi-leaf collimator (MLC) at reduced source to virtual isocentre distance (SVID) in contrast to normal source to isocentre distance (SID) for stereotactic applications. The role of MLC leaf width and 20-80\% penumbra was examined concerning the healthy tissue sparing. Several prescription schemes and target diameters are considered. Results: Paddick's gradient index (GI) as well as comparison of the mean doses to spherical shells at several distances to the target is evaluated. Both emphasize the same results: the healthy tissue sparing in the high dose area around the planning target volume (PTV) is improved at reduced SVID ≤ 70 cm. The effect can be attributed more to steeper penumbra than to finer leaf resolution. Comparing circular collimators at different SVID just as MLC-shaped collimators, always the GI was reduced. Even MLC-shaped collimator at SVID 70 cm had better healthy tissue sparing than an optimal shaped circular collimator at SID 100 cm. Regarding penumbra changes due to varying SVID, the results of the planning study are underlined by film dosimetry measurements with Agility™ MLC. Conclusion: Penumbra requires more attention in comparing studies, especially studies using different planning systems. Reduced SVID probably allows usage of conventional MLC for STX-like irradiations.}, language = {en} } @article{WegenerSauer2018, author = {Wegener, Sonja and Sauer, Otto A.}, title = {Electrometer offset current due to scattered radiation}, series = {Journal of Applied Clinical Medical Physics}, volume = {19}, journal = {Journal of Applied Clinical Medical Physics}, number = {6}, doi = {10.1002/acm2.12458}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176137}, pages = {274-281}, year = {2018}, abstract = {Relative dose measurements with small ionization chambers in combination with an electrometer placed in the treatment room ("internal electrometer") show a large dependence on the polarity used. While this was observed previously for percent depth dose curves (PDDs), the effect has not been understood or preventable. To investigate the polarity dependence of internal electrometers used in conjunction with a small-volume ionization chamber, we placed an internal electrometer at a distance of 1 m from the isocenter and exposed it to different amounts of scattered radiation by varying the field size. We identified irradiation of the electrometer to cause a current of approximately -1 pA, regardless of the sign of the biasing voltage. For low-sensitivity detectors, such a current noticeably distorts relative dose measurements. To demonstrate how the current systematically changes PDDs, we collected measurements with nine ionization chambers of different volumes. As the chamber volume decreased, signal ratios at 20 and 10 cm depth (M20/M10) became smaller for positive bias voltage and larger for negative bias voltage. At the size of the iba CC04 (40 mm\(^{3}\)) the difference of M20/M10 was around 1\% and for the smallest studied chamber, the iba CC003 chamber (3 mm\(^{3}\)), around 7\% for a 10 × 10 cm² field. When the electrometer was moved further from the source or shielded, the additional current decreased. Consequently, PDDs at both polarities were brought into alignment at depth even for the 3 mm\(^{3}\) ionization chamber. The apparent polarity effect on PDDs and lateral beam profiles was reduced considerably by shielding the electrometer. Due to normalization the effect on output values was low. When measurements with a low-sensitivity probe are carried out in conjunction with an internal electrometer, we recommend careful monitoring of the particular setup by testing both polarities, and if deemed necessary, we suggest shielding the electrometer.}, language = {en} } @phdthesis{Wegener2019, author = {Wegener, Sonja}, title = {Dosimetrie unter Nicht-Gleichgewichtsbedingungen}, doi = {10.25972/OPUS-18443}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184431}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {F{\"u}r die Dosimetrie in der Strahlentherapie sind eine Reihe von Detektoren unterschiedlicher Bauform und Funktionsweise erh{\"a}ltlich. Detektoreigenschaften wie die Gr{\"o}ße des aktiven Volumens, energieabh{\"a}ngiges Ansprechen und Feldst{\"o}rungen durch Bauteile beeinflussen ihr Signal, so dass kein idealer, universell einsetzbarer Detektor existiert. Insbesondere unter Messbedingungen, bei denen sich die Teilchenfluenz am Ort der Messung stark {\"a}ndert, k{\"o}nnen die Detektorsignale stark von den wahren Dosisverh{\"a}ltnissen abweichen, z.B. in kleinen Feldern. Im Rahmen dieser Arbeit wurde das Ansprechen verschiedener Detektortypen in solchen Extremsituationen analysiert. Dioden und Ionisationskammern verschiedener Bauformen und Gr{\"o}ßen wurden in verschiedenen Experimenten gegen Gafchromic-EBT3-Film verglichen. Das Ansprechen auf Streustrahlung konnte durch Ausblockung der Feldmitte untersucht werden, wobei zus{\"a}tzlich geometrisch der Volumeneffekt korrigiert wurde. Dabei zeigte sich teils ein starkes {\"U}beransprechen. Ferner wurde gezeigt, dass die bei der Messung von Querprofilen, also sowohl in der Feldmitte, in Bereichen starker Dosisgradienten und außerhalb des Nutzfeldes, auftretenden Abweichungen durch die Verwendung einer Detektorkombination kompensiert werden k{\"o}nnen. Somit verbessert sich auch die {\"U}bereinstimmung mit den auf Film gemessenen Profilen. F{\"u}r Ionisationskammern wurden effektive Messpunkte bestimmt, wobei die notwendigen Verschiebungen teils deutlich geringer waren als in den g{\"a}ngigen Dosimetrieprotokollen empfohlen. Insbesondere f{\"u}r kleinvolumige Ionisationskammern mit geringen Signalst{\"a}rken kam es bei der Verwendung von im Bestrahlungsraum positionierten Elektrometern zu St{\"o}reinfl{\"u}ssen durch Streustrahlung. Diese Effekte konnten durch Reduzierung der das Elektrometer erreichenden Streustrahlung verringert werden. Anschließend ließ sich das Ansprechen im Aufbaubereich vergleichen. Hier zeigten sich insbesondere Unterschiede zwischen den Detektortypen, aber auch zwischen den verwendeten Polarit{\"a}ten der Kammerspannung. Durch die Verwendung einer Bleifolie wurde der Einfluss von Elektronenkontamination herausgefiltert. Zus{\"a}tzlich wurden das Ansprechen verschiedener Detektoren im oberfl{\"a}chennahen Bereich auch bei angelegten magnetischen Feldern von Feldst{\"a}rken bis zu 1,1 T untersucht. In allen F{\"a}llen wurden Detektorgebrauchsgrenzen aufgezeigt. Die Erkenntnisse erm{\"o}glichen es, in den verschiedenen Extremsituationen geeignete Detektoren zu w{\"a}hlen, und eine Absch{\"a}tzung der residualen Abweichungen durchzuf{\"u}hren. Gezeigt wurde auch, wo eine Detektorkombination die Genauigkeit verbessern kann.}, subject = {Dosimetrie}, language = {de} } @article{BratengeierHolubyevWegener2019, author = {Bratengeier, Klaus and Holubyev, Kostyantyn and Wegener, Sonja}, title = {Steeper dose gradients resulting from reduced source to target distance—a planning system independent study}, series = {Journal of Applied Clinical Medical Physics}, volume = {20}, journal = {Journal of Applied Clinical Medical Physics}, number = {1}, doi = {10.1002/acm2.12490}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177424}, pages = {89-100}, year = {2019}, abstract = {Purpose: To quantify the contribution of penumbra in the improvement of healthy tissue sparing at reduced source-to-axis distance (SAD) for simple spherical target and different prescription isodoses (PI). Method: A TPS-independent method was used to estimate three-dimensional (3D) dose distribution for stereotactic treatment of spherical targets of 0.5 cm radius based on single beam two-dimensional (2D) film dosimetry measurements. 1 cm target constitutes the worst case for the conformation with standard Multi-Leaf Collimator (MLC) with 0.5 cm leaf width. The measured 2D transverse dose cross-sections and the profiles in leaf and jaw directions were used to calculate radial dose distribution from isotropic beam arrangement, for both quadratic and circular beam openings, respectively. The results were compared for standard (100 cm) and reduced SAD 70 and 55 cm for different PI. Results: For practical reduction of SAD using quadratic openings, the improvement of healthy tissue sparing (HTS) at distances up to 3 times the PTV radius was at least 6\%-12\%; gradient indices (GI) were reduced by 3-39\% for PI between 40\% and 90\%. Except for PI of 80\% and 90\%, quadratic apertures at SAD 70 cm improved the HTS by up to 20\% compared to circular openings at 100 cm or were at least equivalent; GI were 3\%-33\% lower for reduced SAD in the PI range 40\%-70\%. For PI = 80\% and 90\% the results depend on the circular collimator model. Conclusion: Stereotactic treatments of spherical targets delivered at reduced SAD of 70 or 55 cm using MLC spare healthy tissue around the target at least as good as treatments at SAD 100 cm using circular collimators. The steeper beam penumbra at reduced SAD seems to be as important as perfect target conformity. The authors argue therefore that the beam penumbra width should be addressed in the stereotactic studies.}, language = {en} } @article{WegenerSauer2019, author = {Wegener, Sonja and Sauer, Otto A.}, title = {The effective point of measurement for depth-dose measurements in small MV photon beams with different detectors}, series = {Medical Physics}, volume = {46}, journal = {Medical Physics}, number = {11}, doi = {10.1002/mp.13788}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206148}, pages = {5209-5215}, year = {2019}, abstract = {Purpose: The effective point of measurement (EPOM) of cylindrical ionization chambers differs from their geometric center. The exact shift depends on chamber construction details, above all the chamber size, and to some degree on the field-size and beam quality. It generally decreases as the chamber dimensions get smaller. In this work, effective points of measurement in small photon fields of a range of cylindrical chambers of different sizes are investigated, including small chambers that have not been studied previously. Methods: In this investigation, effective points of measurement for different ionization chambers (Farmer type, scanning chambers, micro-ionization chambers) and solid state detectors were determined by measuring depth-ionization curves in a 6 MV beam in field sizes between 2 9 2 cm2 and 10 9 10 cm2 and comparing those curves with curves measured with plane-parallel chambers. Results: It was possible to average the results to one shift per detector, as the results were sufficiently independent of the studied field sizes. For cylindrical ion chambers, shifts of the EPOM were determined to be between 0.49 and 0.30 times the inner chamber radius from the reference point. Conclusions: We experimentally confirmed the previously reported decrease of the EPOM shift with decreasing detector size. Highly accurate data for a large range of detectors, including new very small ones, were determined. Thus, small chambers noticeably differ from the 0.5-times to 0.6-times the inner chamber radius recommendations in current dosimetry protocols. The detector-individual EPOMs need to be considered for measurements of depth-dose curves.}, language = {en} } @article{WackExnerWegeneretal.2020, author = {Wack, Linda J. and Exner, Florian and Wegener, Sonja and Sauer, Otto A.}, title = {The impact of isocentric shifts on delivery accuracy during the irradiation of small cerebral targets — Quantification and possible corrections}, series = {Journal of Applied Clinical Medical Physics}, volume = {21}, journal = {Journal of Applied Clinical Medical Physics}, number = {5}, doi = {10.1002/acm2.12854}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218146}, pages = {56-64}, year = {2020}, abstract = {Purpose To assess the impact of isocenter shifts due to linac gantry and table rotation during cranial stereotactic radiosurgery on D\(_{98}\), target volume coverage (TVC), conformity (CI), and gradient index (GI). Methods Winston-Lutz (WL) checks were performed on two Elekta Synergy linacs. A stereotactic quality assurance (QA) plan was applied to the ArcCHECK phantom to assess the impact of isocenter shift corrections on Gamma pass rates. These corrections included gantry sag, distance of collimator and couch axes to the gantry axis, and distance between cone-beam computed tomography (CBCT) isocenter and treatment beam (MV) isocenter. We applied the shifts via script to the treatment plan in Pinnacle 16.2. In a planning study, isocenter and mechanical rotation axis shifts of 0.25 to 2 mm were applied to stereotactic plans of spherical planning target volumes (PTVs) of various volumes. The shifts determined via WL measurements were applied to 16 patient plans with PTV sizes between 0.22 and 10.4 cm3. Results ArcCHECK measurements of a stereotactic treatment showed significant increases in Gamma pass rate for all three measurements (up to 3.8 percentage points) after correction of measured isocenter deviations. For spherical targets of 1 cm3, CI was most severely affected by increasing the distance of the CBCT isocenter (1.22 to 1.62). Gradient index increased with an isocenter-collimator axis distance of 1.5 mm (3.84 vs 4.62). D98 (normalized to reference) dropped to 0.85 (CBCT), 0.92 (table axis), 0.95 (collimator axis), and 0.98 (gantry sag), with similar but smaller changes for larger targets. Applying measured shifts to patient plans lead to relevant drops in D\(_{98}\) and TVC (7\%) for targets below 2 cm\(^3\) treated on linac 1. Conclusion Mechanical deviations during gantry, collimator, and table rotation may adversely affect the treatment of small stereotactic lesions. Adjustments of beam isocenters in the treatment planning system (TPS) can be used to both quantify their impact and for prospective correction of treatment plans.}, language = {en} } @article{WegenerHerzogSauer2020, author = {Wegener, Sonja and Herzog, Barbara and Sauer, Otto A.}, title = {Detector response in the buildup region of small MV fields}, series = {Medical Physics}, volume = {47}, journal = {Medical Physics}, number = {3}, doi = {10.1002/mp.13973}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214228}, pages = {1327-1339}, year = {2020}, abstract = {Purpose: The model used to calculate dose distributions in a radiotherapy treatment plan relies on the data entered during beam commissioning. The quality of these data heavily depends on the detector choice made, especially in small fields and in the buildup region. Therefore, it is necessary to identify suitable detectors for measurements in the buildup region of small fields. To aid the understanding of a detector's limitations, several factors that influence the detector signal are to be analyzed, for example, the volume effect due to the detector size, the response to electron contamination, the signal dependence on the polarity used, and the effective point of measurement chosen. Methods: We tested the suitability of different small field detectors for measurements of depth dose curves with a special focus on the surface-near area of dose buildup for fields sized between 10 × 10 and 0.6 × 0.6 cm\(^{2}\). Depth dose curves were measured with 14 different detectors including plane-parallel chambers, thimble chambers of different types and sizes, shielded and unshielded diodes as well as a diamond detector. Those curves were compared with depth dose curves acquired on Gafchromic film. Additionally, the magnitude of geometric volume corrections was estimated from film profiles in different depths. Furthermore, a lead foil was inserted into the beam to reduce contaminating electrons and to study the resulting changes of the detector response. The role of the effective point of measurement was investigated by quantifying the changes occurring when shifting depth dose curves. Last, measurements for the small ionization chambers taken at opposing biasing voltages were compared to study polarity effects. Results: Depth-dependent correction factors for relative depth dose curves with different detectors were derived. Film, the Farmer chamber FC23, a 0.13 cm\(^{3}\) scanning chamber CC13 and a plane-parallel chamber PPC05 agree very well in fields sized 4 × 4 and 10 × 10 cm\(^{2}\). For most detectors and in smaller fields, depth dose curves differ from the film. In general, shielded diodes require larger corrections than unshielded diodes. Neither the geometric volume effect nor the electron contamination can account for the detector differences. The biggest uncertainty arises from the positioning of a detector with respect to the water surface and from the choice of the detector's effective point of measurement. Depth dose curves acquired with small ionization chambers differ by over 15\% in the buildup region depending on sign of the biasing voltage used. Conclusions: A scanning chamber or a PPC40 chamber is suitable for fields larger than 4 × 4 cm\(^{2}\). Below that field size, the microDiamond or small ionization chambers perform best requiring the smallest corrections at depth as well as in the buildup region. Diode response changes considerably between the different types of detectors. The position of the effective point of measurement has a huge effect on the resulting curves, therefore detector specific rather than general shifts of half the inner radius of cylindrical ionization chambers for the effective point of measurement should be used. For small ionization chambers, averaging between both polarities is necessary for data obtained near the surface.}, language = {en} } @article{JaegerWegenerSauer2021, author = {J{\"a}ger, Andreas and Wegener, Sonja and Sauer, Otto A.}, title = {Dose rate correction for a silicon diode detector array}, series = {Journal of Applied Clinical Medical Physics}, volume = {22}, journal = {Journal of Applied Clinical Medical Physics}, number = {10}, doi = {10.1002/acm2.13409}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260446}, pages = {144-151}, year = {2021}, abstract = {Purpose A signal dependence on dose rate was reported for the ArcCHECK array due to recombination processes within the diodes. The purpose of our work was to quantify the necessary correction and apply them to quality assurance measurements. Methods Static 10 × 10 cm\(^2\) 6-MV fields delivered by a linear accelerator were applied to the detector array while decreasing the average dose rate, that is, the pulse frequency, from 500 to 30 MU/min. An ion chamber was placed inside the ArcCHECK cavity as a reference. Furthermore, the instantaneous dose rate dependence (DRD) was studied. The position of the detector was adjusted to change the dose-per-pulse, varying the distance between the focus and the diode closest to the focus between 69.6 and 359.6 cm. Reference measurements were performed with an ion chamber placed inside a PMMA slab phantom at the same source-to-detector distances (SDDs). Exponential saturation functions were fitted to the data, with different parameters to account for two generations of ArcCHECK detectors (types 2 and 3) and both DRDs. Corrections were applied to 12 volumetric modulated arc therapy plans. Results The sensitivity decreased by up to 2.8\% with a decrease in average dose rate and by 9\% with a decrease in instantaneous dose rate. Correcting the average DRD, the mean gamma pass rates (2\%/2-mm criterion) of the treatment plans were improved by 5 percentage points (PP) for diode type 3 and 0.4 PP for type 2. Correcting the instantaneous DRD, the improvement was 8.4 PP for type 3 and 0.9 PP for type 2. Conclusions The instantaneous DRD was identified as the prevailing effect on the diode sensitivity. We developed and validated a method to correct this behavior. The number of falsely not passed treatment plans could be considerably reduced.}, language = {en} } @article{RichterWegenerBreueretal.2021, author = {Richter, Anne and Wegener, Sonja and Breuer, Kathrin and Razinskas, Gary and Weick, Stefan and Exner, Florian and Bratengeier, Klaus and Flentje, Michael and Sauer, Otto and Polat, B{\"u}lent}, title = {Comparison of sliding window and field-in-field techniques for tangential whole breast irradiation using the Halcyon and Synergy Agility systems}, series = {Radiation Oncology}, volume = {16}, journal = {Radiation Oncology}, doi = {10.1186/s13014-021-01942-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265704}, year = {2021}, abstract = {Background To implement a tangential treatment technique for whole breast irradiation using the Varian Halcyon and to compare it with Elekta Synergy Agility plans. Methods For 20 patients two comparable treatment plans with respect to dose coverage and normal tissue sparing were generated. Tangential field-in-field treatment plans (Pinnacle/Synergy) were replanned using the sliding window technique (Eclipse/Halcyon). Plan specific QA was performed using the portal Dosimetry and the ArcCHECK phantom. Imaging and treatment dose were evaluated for treatment delivery on both systems using a modified CIRS Phantom. Results The mean number of monitor units for a fraction dose of 2.67 Gy was 515 MUs and 260 MUs for Halcyon and Synergy Agility plans, respectively. The homogeneity index and dose coverage were similar for both treatment units. The plan specific QA showed good agreement between measured and calculated plans. All Halcyon plans passed portal dosimetry QA (3\%/2 mm) with 100\% points passing and ArcCheck QA (3\%/2 mm) with 99.5\%. Measurement of the cumulated treatment and imaging dose with the CIRS phantom resulted in lower dose to the contralateral breast for the Halcyon plans. Conclusions For the Varian Halcyon a plan quality similar to the Elekta Synergy device was achieved. For the Halcyon plans the dose contribution from the treatment fields to the contralateral breast was even lower due to less interleaf transmission of the Halcyon MLC and a lower contribution of scattered dose from the collimator system.}, language = {en} } @article{PollmannToussaintFlentjeetal.2022, author = {Pollmann, Stephan and Toussaint, Andr{\´e} and Flentje, Michael and Wegener, Sonja and Lewitzki, Victor}, title = {Dosimetric evaluation of commercially available flat vs. self-produced 3D-conformal silicone boluses for the head and neck region}, series = {Frontiers in Oncology}, volume = {12}, journal = {Frontiers in Oncology}, issn = {2234-943X}, doi = {10.3389/fonc.2022.881439}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283156}, year = {2022}, abstract = {Background Boluses are routinely used in radiotherapy to modify surface doses. Nevertheless, considerable dose discrepancies may occur in some cases due to fit inaccuracy of commercially available standard flat boluses. Moreover, due to the simple geometric design of conventional boluses, also surrounding healthy skin areas may be unintentionally covered, resulting in the unwanted dose buildup. With the fused deposition modeling (FDM) technique, there is a simple and possibly cost-effective way to solve these problems in routine clinical practice. This paper presents a procedure of self-manufacturing bespoke patient-specific silicone boluses and the evaluation of buildup and fit accuracy in comparison to standard rectangular commercially available silicone boluses. Methods 3D-conformal silicone boluses were custom-built to cover the surgical scar region of 25 patients who received adjuvant radiotherapy of head and neck cancer at the University Hospital W{\"u}rzburg. During a standard CT-based planning procedure, a 5-mm-thick 3D bolus contour was generated to cover the radiopaque marked surgical scar with an additional safety margin. From these digital contours, molds were 3D printed and poured with silicone. Dose measurements for both types of boluses were performed with radiochromic films (EBT3) at three points per patient—at least one aimed to be in the high-dose area (scar) and one in the lower-dose area (spared healthy skin). Surface-bolus distance, which ideally should not be present, was determined from cone-beam CT performed for positioning control. The dosimetric influence of surface-bolus distance was also determined on slab phantom for different field sizes. The trial was performed with hardware that may be routinely available in every radiotherapy department, with the exception of the 3D printer. The required number of patients was determined based on the results of preparatory measurements with the help of the statistical consultancy of the University of W{\"u}rzburg. The number of measuring points represents the total number of patients. Results In the high-dose area of the scar, there was a significantly better intended dose buildup of 2.45\% (95\%CI 0.0014-0.0477, p = 0.038, N = 30) in favor of a 3D-conformal bolus. Median distances between the body surface and bolus differed significantly between 3D-conformal and commercially available boluses (3.5 vs. 7.9 mm, p = 0.001). The surface dose at the slab phantom did not differ between commercially available and 3D-conformal boluses. Increasing the surface-bolus distance from 5 to 10 mm decreased the surface dose by approximately 2\% and 11\% in the 6 × 6- and 3 × 3-cm2 fields, respectively. In comparison to the commercially available bolus, an unintended dose buildup in the healthy skin areas was reduced by 25.9\% (95\%CI 19.5-32.3, p < 0.01, N = 37) using the 3D-conformal bolus limited to the region surrounding the surgical scar. Conclusions Using 3D-conformal boluses allows a comparison to the commercially available boluses' dose buildup in the covered areas. Smaller field size is prone to a larger surface-bolus distance effect. Higher conformity of 3D-conformal boluses reduces this effect. This may be especially relevant for volumetric modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) techniques with a huge number of smaller fields. High conformity of 3D-conformal boluses reduces an unintended dose buildup in healthy skin. The limiting factor in the conformity of 3D-conformal boluses in our setting was the immobilization mask, which was produced primarily for the 3D boluses. The mask itself limited tight contact of subsequently produced 3D-conformal boluses to the mask-covered body areas. In this respect, bolus adjustment before mask fabrication will be done in the future setting.}, language = {en} }