@article{TempelVeitAssmannetal.2012, author = {Tempel, Jean-Sebastian and Veit, Tempel and Assmann, Marc and Kreilkamp, Lars Erik and H{\"o}fling, Sven and Kamp, Martin and Forchel, Alfred and Bayer, Manfred}, title = {Temperature dependence of pulsed polariton lasing in a GaAs microcavity}, series = {New Journal of Physics}, volume = {14}, journal = {New Journal of Physics}, number = {083014}, doi = {10.1088/1367-2630/14/8/083014}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134022}, year = {2012}, abstract = {The second-order correlation function g\(^2\)(\(\tau\) = 0), input-output curves and pulse duration of the emission from a microcavity exciton-polariton system subsequent to picosecond-pulsed excitation are measured for different temperatures. At low temperatures a two-threshold behaviour emerges, which has been attributed to the onset of polariton lasing and conventional lasing at the first and the second threshold, respectively. We observe that polariton lasing is stable up to temperatures comparable with the exciton binding energy. At higher temperatures a single threshold displays the direct transition from thermal emission to photon lasing.}, language = {en} } @article{AmthorWeissenseelFischeretal.2014, author = {Amthor, Matthias and Weißenseel, Sebastian and Fischer, Julian and Kamp, Martin and Schneider, Christian and H{\"o}fling, Sven}, title = {Electro-optical switching between polariton and cavity lasing in an InGaAs quantum well microcavity}, doi = {10.1364/OE.22.031146}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111130}, year = {2014}, abstract = {We report on the condensation of microcavity exciton polaritons under optical excitation in a microcavity with four embedded InGaAs quantum wells. The polariton laser is characterized by a distinct nonlinearity in the input-output-characteristics, which is accompanied by a drop of the emission linewidth indicating temporal coherence and a characteristic persisting emission blueshift with increased particle density. The temporal coherence of the device at threshold is underlined by a characteristic drop of the second order coherence function to a value close to 1. Furthermore an external electric field is used to switch between polariton regime, polariton condensate and photon lasing.}, language = {en} } @article{MaierGoldForcheletal.2014, author = {Maier, Sebastian and Gold, Peter and Forchel, Alfred and Gregersen, Niels and Mork, Jesper and H{\"o}fling, Sven and Schneider, Christian and Kamp, Martin}, title = {Bright single photon source based on self-aligned quantum dot-cavity systems}, series = {Optics Express}, volume = {22}, journal = {Optics Express}, number = {7}, issn = {1094-4087}, doi = {10.1364/OE.22.008136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119801}, pages = {8136-42}, year = {2014}, abstract = {We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42\% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum dot to a Gaussian shaped nanohill defect that naturally arises during epitaxial growth in a self-aligned manner. We investigate the morphology of these defects and characterize the photonic operation mechanism. Our results show that these naturally arising coupled quantum dot-defects provide a new avenue for efficient (up to 42\% demonstrated) and pure (g(2)(0) value of 0.023) single-photon emission.}, language = {en} } @article{RauHeindelUnsleberetal.2014, author = {Rau, Markus and Heindel, Tobias and Unsleber, Sebastian and Braun, Tristan and Fischer, Julian and Frick, Stefan and Nauerth, Sebastian and Schneider, Christian and Vest, Gwenaelle and Reitzenstein, Stephan and Kamp, Martin and Forchel, Alfred and H{\"o}fling, Sven and Weinfurter, Harald}, title = {Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources-a proof of principle experiment}, series = {New Journal of Physics}, volume = {16}, journal = {New Journal of Physics}, number = {043003}, doi = {10.1088/1367-2630/16/4/043003}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116760}, year = {2014}, abstract = {Highly efficient single-photon sources (SPS) can increase the secure key rate of quantum key distribution (QKD) systems compared to conventional attenuated laser systems. Here we report on a free space QKD test using an electrically driven quantum dot single-photon source (QD SPS) that does not require a separate laser setup for optical pumping and thus allows for a simple and compact SPS QKD system. We describe its implementation in our 500 m free space QKD system in downtown Munich. Emulating a BB84 protocol operating at a repetition rate of 125 MHz, we could achieve sifted key rates of 5-17 kHz with error ratios of 6-9\% and g((2))(0)-values of 0.39-0.76.}, language = {en} } @article{WinklerFischerSchadeetal.2015, author = {Winkler, Karol and Fischer, Julian and Schade, Anne and Amthor, Matthias and Dall, Robert and Geßler, Jonas and Emmerling, Monika and Ostrovskaya, Elena A. and Kamp, Martin and Schneider, Christian and H{\"o}fling, Sven}, title = {A polariton condensate in a photonic crystal potential landscape}, series = {New Journal of Physics}, volume = {17}, journal = {New Journal of Physics}, doi = {10.1088/1367-2630/17/2/023001}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125050}, pages = {023001}, year = {2015}, abstract = {The possibility of investigating macroscopic coherent quantum states in polariton condensates and of engineering polariton landscapes in semiconductors has triggered interest in using polaritonic systems to simulate complex many-body phenomena. However, advanced experiments require superior trapping techniques that allow for the engineering of periodic and arbitrary potentials with strong on-site localization, clean condensate formation, and nearest-neighbor coupling. Here we establish a technology that meets these demands and enables strong, potentially tunable trapping without affecting the favorable polariton characteristics. The traps are based on a locally elongated microcavity which can be formed by standard lithography. We observe polariton condensation with non-resonant pumping in single traps and photonic crystal square lattice arrays. In the latter structures, we observe pronounced energy bands, complete band gaps, and spontaneous condensation at the M-point of the Brillouin zone.}, language = {en} } @article{MotykaSękRyczkoetal.2015, author = {Motyka, Marcin and Sęk, Grzegorz and Ryczko, Krzysztof and Dyksik, Mateusz and Weih, Robert and Patriarche, Gilles and Misiewicz, Jan and Kamp, Martin and H{\"o}fling, Sven}, title = {Interface Intermixing in Type II InAs/GaInAsSb Quantum Wells Designed for Active Regions of Mid-Infrared-Emitting Interband Cascade Lasers}, series = {Nanoscale Research Letters}, volume = {10}, journal = {Nanoscale Research Letters}, number = {471}, doi = {10.1186/s11671-015-1183-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136386}, year = {2015}, abstract = {The effect of interface intermixing in W-design GaSb/AlSb/InAs/Ga\(_{0.665}\)In\(_{0.335}\)As\(_x\)Sb\(_{1-x}\)/InAs/AlSb/GaSb quantum wells (QWs) has been investigated by means of optical spectroscopy supported by structural data and by band structure calculations. The fundamental optical transition has been detected at room temperature through photoluminescence and photoreflectance measurements and appeared to be blueshifted with increasing As content of the GaInAsSb layer, in contrast to the energy-gap-driven shifts calculated for an ideally rectangular QW profile. The arsenic incorporation into the hole-confining layer affects the material and optical structure also altering the InAs/GaInAsSb interfaces and their degree of intermixing. Based on the analysis of cross-sectional transmission electron microscopy images and energy-dispersive X-ray spectroscopy, we could deduce the composition distribution across the QW layers and hence simulate more realistic confinement potential profiles. For such smoothed interfaces that indicate As-enhanced intermixing, the energy level calculations have been able to reproduce the experimentally obtained trend.}, language = {en} } @article{DyksikMotykaSęketal.2015, author = {Dyksik, Mateusz and Motyka, Marcin and Sęk, Grzegorz and Misiewicz, Jan and Dallner, Matthias and Weih, Robert and Kamp, Martin and H{\"o}fling, Sven}, title = {Submonolayer Uniformity of Type II InAs/GaInSb W-shaped Quantum Wells Probed by Full-Wafer Photoluminescence Mapping in the Mid-infrared Spectral Range}, series = {Nanoscale Research Letters}, volume = {10}, journal = {Nanoscale Research Letters}, number = {402}, doi = {10.1186/s11671-015-1104-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139733}, year = {2015}, abstract = {The spatial uniformity of GaSb- and InAs substrate-based structures containing type II quantum wells was probed by means of large-scale photoluminescence (PL) mapping realized utilizing a Fourier transform infrared spectrometer. The active region was designed and grown in a form of a W-shaped structure with InAs and GaInSb layers for confinement of electrons and holes, respectively. The PL spectra were recorded over the entire 2-in. wafers, and the parameters extracted from each spectrum, such as PL peak energy position, its linewidth and integrated intensity, were collected in a form of two-dimensional spatial maps. Throughout the analysis of these maps, the wafers' homogeneity and precision of the growth procedure were investigated. A very small variation of PL peak energy over the wafer indicates InAs quantum well width fluctuation of only a fraction of a monolayer and hence extraordinary thickness accuracy, a conclusion further supported by high uniformity of both the emission intensity and PL linewidth.}, language = {en} } @article{YuNatarajanHorikirietal.2015, author = {Yu, Leo and Natarajan, Chandra M. and Horikiri, Tomoyuki and Langrock, Carsten and Pelc, Jason S. and Tanner, Michael G. and Abe, Eisuke and Maier, Sebastian and Schneider, Christian and H{\"o}fling, Sven and Kamp, Martin and Hadfield, Robert H. and Fejer, Martin M. and Yamamoto, Yoshihisa}, title = {Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, doi = {10.1038/ncomms9955}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138677}, pages = {8955}, year = {2015}, abstract = {Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.}, language = {en} } @article{LeeSongHanetal.2015, author = {Lee, Eun-Hye and Song, Jin-Dong and Han, Il-Ki and Chang, Soo-Kyung and Langer, Fabian and H{\"o}fling, Sven and Forchel, Alfred and Kamp, Martin and Kim, Jong-Su}, title = {Structural and optical properties of position-retrievable low-density GaAs droplet epitaxial quantum dots for application to single photon sources with plasmonic optical coupling}, series = {Nanoscale Research Letters}, volume = {10}, journal = {Nanoscale Research Letters}, number = {114}, doi = {10.1186/s11671-015-0826-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143692}, year = {2015}, abstract = {The position of a single GaAs quantum dot (QD), which is optically active, grown by low-density droplet epitaxy (DE) (approximately 4 QDs/μm\(^{2}\)), was directly observed on the surface of a 45-nm-thick Al\(_{0.3}\)Ga\(_{0.7}\)As capping layer. The thin thickness of AlGaAs capping layer is useful for single photon sources with plasmonic optical coupling. A micro-photoluminescence for GaAs DE QDs has shown exciton/biexciton behavior in the range of 1.654 to 1.657 eV. The direct observation of positions of low-density GaAs DE QDs would be advantageous for mass fabrication of devices that use a single QD, such as single photon sources.}, language = {en} } @article{LeeLimSchneideretal.2015, author = {Lee, Chang-Min and Lim, Hee-Jin and Schneider, Christian and Maier, Sebastian and H{\"o}fling, Sven and Kamp, Martin and Lee, Yong-Hee}, title = {Efficient single photon source based on \(\mu\)-fibre-coupled tunable microcavity}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {14309}, doi = {10.1038/srep14309}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145835}, year = {2015}, abstract = {Efficient and fast on-demand single photon sources have been sought after as critical components of quantum information science. We report an efficient and tunable single photon source based on an InAs quantum dot (QD) embedded in a photonic crystal cavity coupled with a highly curved \(\mu\)-fibre. Exploiting evanescent coupling between the \(\mu\)-fibre and the cavity, a high collection efficiency of 23\% and Purcell-enhanced spontaneous emissions are observed. In our scheme, the spectral position of a resonance can be tuned by as much as 1.5 nm by adjusting the contact position of the \(\mu\)-fibre, which increases the spectral coupling probability between the QD and the cavity mode. Taking advantage of the high photon count rate and the tunability, the collection efficiencies and the decay rates are systematically investigated as a function of the QD-cavity detuning.}, language = {en} }