@phdthesis{Mallak2006, author = {Mallak, Matthias}, title = {Beschichtung planarer Substrate durch Fl{\"u}ssigphasenabscheidung von Titandioxid}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-25008}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Es wurden planare Substrate mittels Fl{\"u}ssigphasenabscheidung mit Titandioxid beschichtet. Durch Absorption von Polyelektrolyten konnte die chemische Beschaffenheit der Substratoberfl{\"a}che so ver{\"a}ndert werden, daß die verwendbaren Substratmaterialien zur Beschichtung mit dem LPD-Verfahren um Glas, Polycarbonat, PET und Polyethylen erweitert wurden. Bedeutung kommt besonders der LPD-Beschichtung auf Borosilicatglas zu, da damit erstmalig ein Vergleich zwischen TiO2-Schichten aus der Fl{\"u}ssigphasenabscheidung und Schichten, die mittels Sol-Gel-Verfahren gewonnen wurden, m{\"o}glich wurde. Der systematische Vergleich zwischen den Schichten der beiden Beschichtungsverfahren, ergab, daß Sol-Gel-Beschichtungen eine thermische Nachbehandlung mit Temperaturen gr{\"o}ßer 400°C ben{\"o}tigen, um ihre optimalen optischen und mechanischen Eigenschaften zu erreichen. Dabei tritt zwar eine starke Schrumpfung durch die Pyrolyse organischer Reste und Kristallisation auf. Jedoch f{\"u}hrt diese Schrumpfung zu keiner Rißbildung oder Delaminierung. Im Gegenteil, die Ausbildung eines anorganischen Netzwerkes f{\"u}hrt zum Aush{\"a}rten der Schicht. Die bei h{\"o}heren Temperaturen auftretende Kristallisation erm{\"o}glicht einen h{\"o}heren Brechungsindex der Schicht bei gleichbleibend sehr guter Transparenz. Die bereits teilkristallin abgeschiedenen TiO2-Filme aus dem LPD-Verfahren schrumpfen zwar weit weniger stark als die Sol-Gel-Schichten, durch eine schlechte Haftung auf der Glasoberfl{\"a}che verbreitern sich jedoch bereits vorhandene schmale Risse. Die Pyrolyse des Polyelektrolytlayers f{\"u}hrt zum Verlust der haftvermittelnden Schicht und damit zu einem drastischen R{\"u}ckgang der Schichthaftung und daraus bedingend der Bleistifth{\"a}rte. Die Rißbildung verursacht einen starken Anstieg der Schichttr{\"u}bung. Weiterhin verursacht die Rißverbreitung bei steigender Temperatur einen geringeren Brechzahlanstieg, als dies das LPD-Material erm{\"o}glichen w{\"u}rde. Durch diese Ergebnisse wird offensichtlich, daß f{\"u}r Substrate, die hohe Temperaturen erm{\"o}glichen, Sol-Gel-Beschichtungen dem LPD-Verfahren vorzuziehen ist. F{\"u}r thermisch nicht belastbare Substrate stellt die Fl{\"u}ssigphasenabscheidung jedoch ein sehr gutes Beschichtungsverfahren dar. Um bestm{\"o}gliche Ergebnisse mit dem LPD-Verfahren zu erzielen, kommt der Modifizierung der Substratoberfl{\"a}che eine entscheiden Bedeutung zu. Zur bereits bekannten Oberfl{\"a}chenmodifizierung durch {\"A}tzen mit Natriumperoxodisulfat (Hydroxylierung) wurde hierbei die zus{\"a}tzliche bzw. alleinige Funktionalisierung durch Adsorption eines Polyelektrolytbilayers untersucht. Durch die Verwendung eines Polyelektrolytbilayers konnte die Dichte an Kristallisationsstellen im Vergleich zum unbehandelten bzw. hydroxylierten Substrat erh{\"o}ht werden. Dies f{\"u}hrte im Einklang mit dem bekannten Schichtwachstummodell zu gleichm{\"a}ßigeren Beschichtungen. Der Einsatz des Polyelektrolytbilayers konnte in allen F{\"a}llen dazu genutzt werden, die Tr{\"u}bung der Schicht zu verringern. Dabei wurden Tr{\"u}bungswerte gr{\"o}ßer 50 \% meist auf Werte von ca. 20 \% und kleiner verbessert. Hohe Keimdichten bewirken dabei eine geringe Tr{\"u}bung. Jedoch konnte auch bei geringeren Keimdichten durch den Polyelektrolytbilayer geringe Tr{\"u}bungswerte erreicht werden. Bei der mechanischen Charakterisierung der TiO2-Schichten konnte festgestellt werden, daß bei den polymeren Substraten durch Hydroxylierung oder den Polyelektrolytbilayer die Schichthaftung verbessert werden. Eine Abh{\"a}ngigkeit der mechanischen Schichteigenschaften von der Substrath{\"a}rt konnte mit Ausnahme des sehr weichen Polyethylens nicht gefunden werden. Jedoch ist f{\"u}r eine hohe Bleistifth{\"a}rte eine gute Haftung n{\"o}tig. Abriebuntersuchungen mit einem Filzstempel (Crockmetertest) zeigten ein analoges Verhalten zum Bleistifth{\"a}rtetest. Um eventuell auftretende Nachteile der weichen Polymere ausgleichen zu k{\"o}nnen, wurden parallel Polystyrolsubstrate, beschichtet mit einer ORMOCER®-Hartschicht, untersucht. Dabei wurden sehr gute Ergebnisse in Hinblick auf Keimstellendichte, optische und mechanische Eigenschaften erzielt.}, subject = {Anorganische Beschichtung}, language = {de} } @phdthesis{Bockmeyer2007, author = {Bockmeyer, Matthias}, title = {Structure and Densification of Thin Films Prepared From Soluble Precursor Powders by Sol-Gel Processing}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-24577}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {The main focus of this work was to get a deeper understanding of the relationship between the structure of sol-gel films, their densification and their macroscopic cracking. First of all titania was chosen as model system. Therefore a synthesis route starting from the preparation of long-term stable amorphous redissoluble precursor powders based on acetylacetone as chelate ligand was utilized. The solubility and stability of the powders in various solvents can be determined by chemical synthesis and technological parameters. When dissolved in a solvent mixture of ethanol and 1,5-pentanediol, thin films can be easily prepared by dip-coating technique. Thereby the quality of the titania films enormously depends on the calcinations temperature and the solvent mixture is used. In order to investigate the influence of different solvents and solvent mixtures on the microstructure and densification of the precursors, the coating solutions were stripped off (sol powder) and analyzed as function of annealing temperature. It was pointed out that a high densification rate caused by the addition of 1,5-pentanediol, results in dense microstructure with trapped residual carbon. These impurities can retard the phase transformation of anatase to rutile. The analysis of so-called "film powders" scraped off multiple dip-coated substrates provides valuable information on the effect of air moisture and unidirectional densification during drying and aging on the structure of thin films. The high surface-to-volume ratio and access to air moisture determine the chemical composition of the as-prepared film, which controls shrinkage, crystallization and defect structure of the coatings. Further it was shown, that drying as a thin film results in the formation of closed pores and much denser microstructure than the respective sol powder. Without the addition of 1,5-pentanediol all -OEt moieties undergo hydrolysis reactions, which causes the formation of a rigid network. The presence of 1,5-pentanediol retards this hydrolysis reactions and provides some network plasticity. Generally the microstructure of thin films is comparatively close to the microstructure of the film powders. The addition of 1,5-pentandiol prevents hydrolysis and condensation reactions as like in the film powders. However even at 700 °C, thin films never transform to rutile, which was attributed to the tensile stresses in thin films. In thin films and in film powders as well a comparable amount of closed pores are formed during annealing. Further it was shown that most of the thin sol-gel films investigated form a dense crust on their tops during annealing. This explains why crack free films exhibit only closed pores. However, when cracks appear during thin film shrinkage in the coating, this crust is burst, which generates open porosity. The defect density in the coatings was determined by an automated analysis of surface images. The crack formation and quantity can be directly referred to tensile stresses in the coatings, which arise from hydrolysis and condensation during thin film drying and aging. Therefore when 1,5-pentanediol is added to the sol, thin film cracking was avoided, because hydrolysis and condensation reactions are retarded, which preserves a higher network flexibility. Furthermore the crack formation was significantly influenced by the atmospheric humidity that was used during the coating process, which was explained by different drying and condensation rates. Under certain chemical starting conditions water soluble precursor powders can be also obtained. In general the observations made with the water based coating solutions are mostly in agreement with the former results based on ethanol based coating solutions. For example the high surface-to-volume ratio of film powders compared to sol powders also significantly enhances film drying and densification. The addition of 1,5-pentanediol also clearly contributes to their densification behavior and phase evolution. As seen before in the case of ethanol based coatings, 1,5-pentanediol enhances the stability towards hydrolysis and condensation reactions and preserves some network plasticity. Therefore coatings prepared without the addition of 1,5-pentanediol already form cracks during film drying and aging because of tensile stresses. Thus, the addition of 1,5-pentanediol results in a reduction/prevention of crack formation. Nevertheless some differences were observed, i.e. the critical single coating film thickness of ethanol based coatings is nearly twice that of water based coatings. This was explained by the different surface tensions of the basis solvents, which during thin film drying causes significantly higher capillary forces and tensile stresses in water based coatings. When acetylacetone is replaced by triethanolamine as chelating ligand for titanium also re-dissolvable precursor powders can be synthesized. The film powders combine a high hydrolytic stability of the precursor with sufficient intermediate network flexibility. The different type of organics changes the drying and densification behavior: i.e. in contrast to film powders obtained from acetylacetone based precursor powders the structure of triethanolamine based film powders is unaffected by the thin film drying process. This high hydrolytic stability and plasticity of this precursor allows the preparation of defect free coatings up to single film thickness of 300 nm. However triethanolamine based thin films present at intermediary annealing temperatures a distinctively different microstructure compared to acetylacetone based films. The general validity of the conclusions was proved on the basis of zirconia coatings that were also prepared by the use of re-dissolvable precursor powders. In principle all conclusions concerning the interconnection of precursor chemistry, film formation, densification and structure were transferable to the respective zirconia coatings. Differences mainly arise only from differential material properties i.e. bulk density. Finally, it has been pointed out that the findings obtained on the densification behavior of thinsol-gel films are also a valuable tool for improved explanations of other important scientific questions concerning sol-gel films, i.e. scratch resistance of sol-gel coatings, fiber -bridging and - degradation of sol-gel coated fibers.}, subject = {Sol-Gel-Verfahren}, language = {en} }