@article{NguemeniHomolaNakchbandietal.2020, author = {Nguemeni, Carine and Homola, Gy{\"o}rgy A. and Nakchbandi, Luis and Pham, Mirko and Volkmann, Jens and Zeller, Daniel}, title = {A Single Session of Anodal Cerebellar Transcranial Direct Current Stimulation Does Not Induce Facilitation of Locomotor Consolidation in Patients With Multiple Sclerosis}, series = {Frontiers in Human Neuroscience}, volume = {14}, journal = {Frontiers in Human Neuroscience}, issn = {1662-5161}, doi = {10.3389/fnhum.2020.588671}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215291}, year = {2020}, abstract = {Background: Multiple sclerosis (MS) may cause variable functional impairment. The discrepancy between functional impairment and brain imaging findings in patients with MS (PwMS) might be attributed to differential adaptive and consolidation capacities. Modulating those abilities could contribute to a favorable clinical course of the disease. Objectives: We examined the effect of cerebellar transcranial direct current stimulation (c-tDCS) on locomotor adaptation and consolidation in PwMS using a split-belt treadmill (SBT) paradigm. Methods: 40 PwMS and 30 matched healthy controls performed a locomotor adaptation task on a SBT. First, we assessed locomotor adaptation in PwMS. In a second investigation, this training was followed by cerebellar anodal tDCS applied immediately after the task ipsilateral to the fast leg (T0). The SBT paradigm was repeated 24 h (T1) and 78 h (T2) post-stimulation to evaluate consolidation. Results: The gait dynamics and adaptation on the SBT were comparable between PwMS and controls. We found no effects of offline cerebellar anodal tDCS on locomotor adaptation and consolidation. Participants who received the active stimulation showed the same retention index than sham-stimulated subjects at T1 (p = 0.33) and T2 (p = 0.46). Conclusion: Locomotor adaptation is preserved in people with mild-to-moderate MS. However, cerebellar anodal tDCS applied immediately post-training does not further enhance this ability. Future studies should define the neurobiological substrates of maintained plasticity in PwMS and how these substrates can be manipulated to improve compensation. Systematic assessments of methodological variables for cerebellar tDCS are urgently needed to increase the consistency and replicability of the results across experiments in various settings.}, language = {en} } @article{PeterkaOdorferSchwabetal.2020, author = {Peterka, Manuel and Odorfer, Thorsten and Schwab, Michael and Volkmann, Jens and Zeller, Daniel}, title = {LSVT-BIG therapy in Parkinson's disease: physiological evidence for proprioceptive recalibration}, series = {BMC Neurology}, volume = {20}, journal = {BMC Neurology}, doi = {10.1186/s12883-020-01858-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230084}, year = {2020}, abstract = {Background There is growing evidence for proprioceptive dysfunction in patients with Parkinson's disease (PD). The Lee Silvermann Voice Treatment-BIG therapy (LSVT-BIG), a special training program aiming at an increase of movement amplitudes in persons with PD (PwPD), has shown to be effective on motor symptoms. LSVT-BIG is conceptionally based on improving bradykinesia, in particular the decrement of repetitive movements, by proprioceptive recalibration. Objective To assess proprioceptive impairment in PwPD as compared to matched controls and to probe potential recalibration effects of the LSVT-BIG therapy on proprioception. Methods Proprioceptive performance and fine motor skills were assessed in 30 PwPD and 15 matched controls. Measurements with significant impairment in PwPD were chosen as outcome parameters for a standardized 4 weeks amplitude-based training intervention (LSVT-BIG) in 11 PwPD. Proprioceptive performance served as primary outcome measure. Secondary outcome measures included the motor part of the MDS-UPDRS, the nine-hole-peg test, and a questionnaire on quality of life. Post-interventional assessments were conducted at weeks 4 and 8. Results Compared to the control group, PwPD showed significantly larger pointing errors. After 4 weeks of LSVT-BIG therapy and even more so after an additional 4 weeks of continued training, proprioceptive performance improved significantly. In addition, quality of life improved as indicated by a questionnaire. Conclusion LSVT-BIG training may achieve a recalibration of proprioceptive processing in PwPD. Our data indicates a probable physiological mechanism of a symptom-specific, amplitude-based behavioral intervention in PwPD.}, language = {en} }