@article{SuterPlessErnzerhofetal.1994, author = {Suter, H. U. and Pleß, V. and Ernzerhof, M. and Engels, Bernd}, title = {Difficulties in the Calculation of Electron Spin Resonance Parameters using Density Functional Methods}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59113}, year = {1994}, abstract = {Density functional theory is applied to the calculation ofthe isotropic byperfine coupJing constants in some small molecules. Various functionals are tested. The agreement of the calculated values to experimental data and values obtained from sophisticated ab initio methods depends on the functionals used and the system under consideration. With respect to spin density calculations the functional of Lee, Yang and Parr with Becke's excbange functional (BLYP) is found to give good results for tbe heavier center of the CH and the NH molecule, while the spin densities of other molecules such as OH, H\(_2\)CN, H\(_2\)CO\(^+\), NO and O\(_2\) deviate considerably from experimental and/or other theoretical results (30\%-60\%). In cases where the singly occupied orbital can contribute to the isotropic hyperfine coupling constants, accurate results are obtained. The reason fortbis is analyzed.}, subject = {Organische Chemie}, language = {en} } @article{SuterHuangEngels1994, author = {Suter, H. U. and Huang, M.-B. and Engels, Bernd}, title = {A Multireference Configuration Interaction Study of the Hyperfine Structure of the Molecules CCO, CNN and NCN in their triplet ground states}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59108}, year = {1994}, abstract = {The hyperfine structures of the isoelectronic molecules CCO. CNN, and NCN in their triplet ground states (X\(^3 \sum ^-\)) are investigated by means of ab initio methods. The infrared frequencies and geometries are detennined and compared with experiment. Configuration selected multireference configuration interaction calculations in combination with perturbation theory to correct the wave function (MRD-CI/B\(_K\)) employing extended atomic orbital (AO) basis sets yielded very accurate hyperfine properties. The theoretical values for CCO are in excellent agreement with the experimental values determined by Smith and Weltner [J. Chem. Phys. 62,4592 (1975)]. For CNN, the first assignment of Smith and Weltner for the two nitrogen atoms has to be changed. A qualitative discussion of the electronic structure discloses no simple relation between the structure of the singly occupied orbitals and the measured hyperfine coupling constants. Vibrational effects were found to be of little importance.}, subject = {Organische Chemie}, language = {en} } @article{SuterEngels1994, author = {Suter, H. U. and Engels, Bernd}, title = {Theoretical investigation of ESR parameters: H\(_2\)CN and H\(_2\)CO\(^+\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59029}, year = {1994}, abstract = {The hyperfine structure of the two isoelectronic molecules H\(_2\)CN and H\(_2\)CO\(^+\) in their electronic ground state (X\(^2\)B\(_2\)) is studied. The influence of the atomic orbital (AO), basis sets, of the correlation treatment, and of the. equilibrium geometry on the obtained hyperfine propertles 1s - investigated. It is found that the multireference double excitation-configuration interaction (MRD-CI)/ BK treatment in which an MRD-CI wave function is corrected by a modified B\(_K\) method yields equivalent results to quadratic CI [QCISD(T)], coupled cluster single doubles [CCSD(T)), or Brueckner doubled [BD(T)]. Uncertainties in the equilibrium geometries are found to be the major source for discrepancies between theoretically and experimentally determined isotropic hyperfine coupling constants (hfccs). For the heavier centers, the calculated values of the isotropic hfccs agrees nearly perfectly with experimental values (\(\approx\) 1\%-2\%). The calculated values for the hydrogens are too low, but using the equilibrium structure suggested by Yamamoto and Sato [J. Chem. Phys. 96, 4157 ( 1992)], the best estimate deviates by less than 3\%.}, subject = {Organische Chemie}, language = {en} } @article{HuangSuterEngels1994, author = {Huang, M.-B. and Suter, H. U. and Engels, Bernd}, title = {Theoretical Study of the Dimethylamino Radical (CH\(_3\))\(_2\)N and its protonated cation (CH\(_3\))\(_2\)NH\(^+\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59047}, year = {1994}, abstract = {In the present work the dimethylamino radical ( ( CH\(_3\)) \(_2\)N) and its protonated cation ( ( CH\(_3\))\(_2\)NH\(^+\)) are investigated by means of ab initio methods. The geometries of various conformations of both compounds are obtained with UMP2/6·31 G** calculations, while the hyperfine structure and its dependence on the geometry is studied using the MRD-Cl/B\(_K\) method. The two molecules are compared to study the inftuence of the protonation on geometry and hyperfine structure. The effects of the rotational barriers on the hyperfine structures of (CH\(_3\))\(_2\)N, (CH\(_3\)CH\(_2\))\(_2\)N and ( (CH\(_3\))\(_2\)CH)\(_2\)N will be discussed.}, subject = {Organische Chemie}, language = {en} } @article{PlessSuterEngels1994, author = {Pleß, V. and Suter, H. U. and Engels, Bernd}, title = {Ab initio study of the energy difference between the benzene and the cumulene form of the C\(_6\) molecule}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59059}, year = {1994}, abstract = {The energy difference between the three lowest-lying isomers of C\(_6\) the linear \(^3 \sum ^-\) state and the two ring forms,the benzene structure (\(^1\)A\(_{18}\)) possessing D\(_{6h}\) symmetry and a distorted cyclic form ( \(^1\)A'\(_1\), D\(_{3h}\) symmetry) have been calculated using various ab initio methods. Variational methods such as multireference configuration interaction (MR-CI) and complete active space second order perturbatiOn treatment (CASPT2) have been applied, as weil as perturbational treatments and coupled cluster calculations (CCD). The correlation of all valence shell electrons is found to be important for a balanced description of the isomers of C\(_6\) . Methods which do not account for higher-order effects appropriately proved to be unsuitable for calculating the energy difference correctly. The results from multireference configuration interaction methods show that the isomers are close in energy with the cyclic forms somewhat lower than the linear form. The ring form possessing D\(_{3h}\) symmetry (\(^1\)A'\(_1\)} is found tobe the lowest-lying structure.}, subject = {Organische Chemie}, language = {en} }