@article{LiShanRupprechtetal.2022, author = {Li, Donghai and Shan, Hangyong and Rupprecht, Christoph and Knopf, Heiko and Watanabe, Kenji and Taniguchi, Takashi and Qin, Ying and Tongay, Sefaattin and Nuß, Matthias and Schr{\"o}der, Sven and Eilenberger, Falk and H{\"o}fling, Sven and Schneider, Christian and Brixner, Tobias}, title = {Hybridized exciton-photon-phonon states in a transition-metal-dichalcogenide van-der-Waals heterostructure microcavity}, series = {Physical Review Letters}, journal = {Physical Review Letters}, edition = {accepted version}, issn = {1079-7114}, doi = {10.1103/PhysRevLett.128.087401}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-351303}, year = {2022}, abstract = {Excitons in atomically thin transition-metal dichalcogenides (TMDs) have been established as an attractive platform to explore polaritonic physics, owing to their enormous binding energies and giant oscillator strength. Basic spectral features of exciton polaritons in TMD microcavities, thus far, were conventionally explained via two-coupled-oscillator models. This ignores, however, the impact of phonons on the polariton energy structure. Here we establish and quantify the threefold coupling between excitons, cavity photons, and phonons. For this purpose, we employ energy-momentum-resolved photoluminescence and spatially resolved coherent two-dimensional spectroscopy to investigate the spectral properties of a high-quality-factor microcavity with an embedded WSe\(_2\) van-der-Waals heterostructure at room temperature. Our approach reveals a rich multi-branch structure which thus far has not been captured in previous experiments. Simulation of the data reveals hybridized exciton-photon-phonon states, providing new physical insight into the exciton polariton system based on layered TMDs.}, language = {en} } @article{WyborskiPodemskiWrońskietal.2022, author = {Wyborski, Paweł and Podemski, Paweł and Wroński, Piotr Andrzej and Jabeen, Fauzia and H{\"o}fling, Sven and Sęk, Grzegorz}, title = {Electronic and optical properties of InAs QDs grown by MBE on InGaAs metamorphic buffer}, series = {Materials}, volume = {15}, journal = {Materials}, number = {3}, issn = {1996-1944}, doi = {10.3390/ma15031071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297037}, year = {2022}, abstract = {We present the optical characterization of GaAs-based InAs quantum dots (QDs) grown by molecular beam epitaxy on a digitally alloyed InGaAs metamorphic buffer layer (MBL) with gradual composition ensuring a redshift of the QD emission up to the second telecom window. Based on the photoluminescence (PL) measurements and numerical calculations, we analyzed the factors influencing the energies of optical transitions in QDs, among which the QD height seems to be dominating. In addition, polarization anisotropy of the QD emission was observed, which is a fingerprint of significant valence states mixing enhanced by the QD confinement potential asymmetry, driven by the decreased strain with increasing In content in the MBL. The barrier-related transitions were probed by photoreflectance, which combined with photoluminescence data and the PL temperature dependence, allowed for the determination of the carrier activation energies and the main channels of carrier loss, identified as the carrier escape to the MBL barrier. Eventually, the zero-dimensional character of the emission was confirmed by detecting the photoluminescence from single QDs with identified features of the confined neutral exciton and biexciton complexes via the excitation power and polarization dependences.}, language = {en} } @article{PfenningKruegerJabeenetal.2022, author = {Pfenning, Andreas and Kr{\"u}ger, Sebastian and Jabeen, Fauzia and Worschech, Lukas and Hartmann, Fabian and H{\"o}fling, Sven}, title = {Single-photon counting with semiconductor resonant tunneling devices}, series = {Nanomaterials}, volume = {12}, journal = {Nanomaterials}, number = {14}, issn = {2079-4991}, doi = {10.3390/nano12142358}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281922}, year = {2022}, abstract = {Optical quantum information science and technologies require the capability to generate, control, and detect single or multiple quanta of light. The need to detect individual photons has motivated the development of a variety of novel and refined single-photon detectors (SPDs) with enhanced detector performance. Superconducting nanowire single-photon detectors (SNSPDs) and single-photon avalanche diodes (SPADs) are the top-performer in this field, but alternative promising and innovative devices are emerging. In this review article, we discuss the current state-of-the-art of one such alternative device capable of single-photon counting: the resonant tunneling diode (RTD) single-photon detector. Due to their peculiar photodetection mechanism and current-voltage characteristic with a region of negative differential conductance, RTD single-photon detectors provide, theoretically, several advantages over conventional SPDs, such as an inherently deadtime-free photon-number resolution at elevated temperatures, while offering low dark counts, a low timing jitter, and multiple photon detection modes. This review article brings together our previous studies and current experimental results. We focus on the current limitations of RTD-SPDs and provide detailed design and parameter variations to be potentially employed in next-generation RTD-SPD to improve the figure of merits of these alternative single-photon counting devices. The single-photon detection capability of RTDs without quantum dots is shown.}, language = {en} } @article{RothmayrGuarinCastroHartmannetal.2022, author = {Rothmayr, Florian and Guarin Castro, Edgar David and Hartmann, Fabian and Knebl, Georg and Schade, Anne and H{\"o}fling, Sven and Koeth, Johannes and Pfenning, Andreas and Worschech, Lukas and Lopez-Richard, Victor}, title = {Resonant tunneling diodes: mid-infrared sensing at room temperature}, series = {Nanomaterials}, volume = {12}, journal = {Nanomaterials}, number = {6}, issn = {2079-4991}, doi = {10.3390/nano12061024}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267152}, year = {2022}, abstract = {Resonant tunneling diode photodetectors appear to be promising architectures with a simple design for mid-infrared sensing operations at room temperature. We fabricated resonant tunneling devices with GaInAsSb absorbers that allow operation in the 2-4 μm range with significant electrical responsivity of 0.97 A/W at 2004 nm to optical readout. This paper characterizes the photosensor response contrasting different operational regimes and offering a comprehensive theoretical analysis of the main physical ingredients that rule the sensor functionalities and affect its performance. We demonstrate how the drift, accumulation, and escape efficiencies of photogenerated carriers influence the electrostatic modulation of the sensor's electrical response and how they allow controlling the device's sensing abilities.}, language = {en} } @article{SchlottmannSchickeKruegeretal.2019, author = {Schlottmann, Elisabeth and Schicke, David and Kr{\"u}ger, Felix and Lingnau, Benjamin and Schneider, Christian and H{\"o}fling, Sven and L{\"u}dge, Kathy and Porte, Xavier and Reitzenstein, Stephan}, title = {Stochastic polarization switching induced by optical injection in bimodal quantum-dot micropillar lasers}, series = {Optics Express}, volume = {27}, journal = {Optics Express}, number = {20}, doi = {10.1364/OE.27.028816}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228603}, pages = {28816-28831}, year = {2019}, abstract = {Mutual coupling and injection locking of semiconductor lasers is of great interest in non-linear dynamics and its applications for instance in secure data communication and photonic reservoir computing. Despite its importance, it has hardly been studied in microlasers operating at mu W light levels. In this context, vertically emitting quantum dot micropillar lasers are of high interest. Usually, their light emission is bimodal, and the gain competition of the associated linearly polarized fundamental emission modes results in complex switching dynamics. We report on selective optical injection into either one of the two fundamental mode components of a bimodal micropillar laser. Both modes can lock to the master laser and influence the non-injected mode by reducing the available gain. We demonstrate that the switching dynamics can be tailored externally via optical injection in very good agreement with our theory based on semi-classical rate equations. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement}, language = {en} } @article{WyborskiMusiałMrowińskietal.2021, author = {Wyborski, Paweł and Musiał, Anna and Mrowiński, Paweł and Podemski, Paweł and Baumann, Vasilij and Wroński, Piotr and Jabeen, Fauzia and H{\"o}fling, Sven and Sęk, Grzegorz}, title = {InP-substrate-based quantum dashes on a DBR as single-photon emitters at the third telecommunication window}, series = {Materials}, volume = {14}, journal = {Materials}, number = {4}, issn = {1996-1944}, doi = {10.3390/ma14040759}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228773}, year = {2021}, abstract = {We investigated emission properties of photonic structures with InAs/InGaAlAs/InP quantum dashes grown by molecular beam epitaxy on a distributed Bragg reflector. In high-spatial-resolution photoluminescence experiment, well-resolved sharp spectral lines are observed and single-photon emission is detected in the third telecommunication window characterized by very low multiphoton events probabilities. The photoluminescence spectra measured on simple photonic structures in the form of cylindrical mesas reveal significant intensity enhancement by a factor of 4 when compared to a planar sample. These results are supported by simulations of the electromagnetic field distribution, which show emission extraction efficiencies even above 18\% for optimized designs. When combined with relatively simple and undemanding fabrication approach, it makes this kind of structures competitive with the existing solutions in that spectral range and prospective in the context of efficient and practical single-photon sources for fiber-based quantum networks applications.}, language = {en} } @article{WrońskiWyborskiMusiałetal.2021, author = {Wroński, Piotr Andrzej and Wyborski, Paweł and Musiał, Anna and Podemski, Paweł and Sęk, Grzegorz and H{\"o}fling, Sven and Jabeen, Fauzia}, title = {Metamorphic Buffer Layer Platform for 1550 nm Single-Photon Sources Grown by MBE on (100) GaAs Substrate}, series = {Materials}, volume = {14}, journal = {Materials}, number = {18}, issn = {1996-1944}, doi = {10.3390/ma14185221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246145}, year = {2021}, abstract = {We demonstrate single-photon emission with a low probability of multiphoton events of 5\% in the C-band of telecommunication spectral range of standard silica fibers from molecular beam epitaxy grown (100)-GaAs-based structure with InAs quantum dots (QDs) on a metamorphic buffer layer. For this purpose, we propose and implement graded In content digitally alloyed InGaAs metamorphic buffer layer with maximal In content of 42\% and GaAs/AlAs distributed Bragg reflector underneath to enhance the extraction efficiency of QD emission. The fundamental limit of the emission rate for the investigated structures is 0.5 GHz based on an emission lifetime of 1.95 ns determined from time-resolved photoluminescence. We prove the relevance of a proposed technology platform for the realization of non-classical light sources in the context of fiber-based quantum communication applications.}, language = {en} } @article{vanLoockAltBecheretal.2020, author = {van Loock, Peter and Alt, Wolfgang and Becher, Christoph and Benson, Oliver and Boche, Holger and Deppe, Christian and Eschner, J{\"u}rgen and H{\"o}fling, Sven and Meschede, Dieter and Michler, Peter and Schmidt, Frank and Weinfurter, Harald}, title = {Extending Quantum Links: Modules for Fiber- and Memory-Based Quantum Repeaters}, series = {Advanced Quantum Technologies}, volume = {3}, journal = {Advanced Quantum Technologies}, number = {11}, doi = {10.1002/qute.201900141}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228322}, year = {2020}, abstract = {Elementary building blocks for quantum repeaters based on fiber channels and memory stations are analyzed. Implementations are considered for three different physical platforms, for which suitable components are available: quantum dots, trapped atoms and ions, and color centers in diamond. The performances of basic quantum repeater links for these platforms are evaluated and compared, both for present-day, state-of-the-art experimental parameters as well as for parameters that can in principle be reached in the future. The ultimate goal is to experimentally explore regimes at intermediate distances—up to a few 100 km—in which the repeater-assisted secret key transmission rates exceed the maximal rate achievable via direct transmission. Two different protocols are considered, one of which is better adapted to the higher source clock rate and lower memory coherence time of the quantum dot platform, while the other circumvents the need of writing photonic quantum states into the memories in a heralded, nondestructive fashion. The elementary building blocks and protocols can be connected in a modular form to construct a quantum repeater system that is potentially scalable to large distances.}, language = {en} } @article{LundtKlembtCherotchenkoetal.2016, author = {Lundt, Nils and Klembt, Sebastian and Cherotchenko, Evgeniia and Betzold, Simon and Iff, Oliver and Nalitov, Anton V. and Klaas, Martin and Dietrich, Christof P. and Kavokin, Alexey V. and H{\"o}fling, Sven and Schneider, Christian}, title = {Room-temperature Tamm-plasmon exciton-polaritons with a WSe\(_{2}\) monolayer}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms13328}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169470}, year = {2016}, abstract = {Solid-state cavity quantum electrodynamics is a rapidly advancing field, which explores the frontiers of light-matter coupling. Metal-based approaches are of particular interest in this field, as they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. Transition metal dichalcogenides are ideally suited as the active material in cavity quantum electrodynamics, as they interact strongly with light at the ultimate monolayer limit. Here, we implement a Tamm-plasmon-polariton structure and study the coupling to a monolayer of WSe\(_{2}\), hosting highly stable excitons. Exciton-polariton formation at room temperature is manifested in the characteristic energy-momentum dispersion relation studied in photoluminescence, featuring an anti-crossing between the exciton and photon modes with a Rabi-splitting of 23.5 meV. Creating polaritonic quasiparticles in monolithic, compact architectures with atomic monolayers under ambient conditions is a crucial step towards the exploration of nonlinearities, macroscopic coherence and advanced spinor physics with novel, low-mass bosons.}, language = {en} } @article{HeIffLundtetal.2016, author = {He, Yu-Ming and Iff, Oliver and Lundt, Nils and Baumann, Vasilij and Davanco, Marcelo and Srinivasan, Kartik and H{\"o}fling, Sven and Schneider, Christian}, title = {Cascaded emission of single photons from the biexciton in monolayered WSe\(_{2}\)}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms13409}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169363}, year = {2016}, abstract = {Monolayers of transition metal dichalcogenide materials emerged as a new material class to study excitonic effects in solid state, as they benefit from enormous Coulomb correlations between electrons and holes. Especially in WSe\(_{2}\), sharp emission features have been observed at cryogenic temperatures, which act as single photon sources. Tight exciton localization has been assumed to induce an anharmonic excitation spectrum; however, the evidence of the hypothesis, namely the demonstration of a localized biexciton, is elusive. Here we unambiguously demonstrate the existence of a localized biexciton in a monolayer of WSe\(_{2}\), which triggers an emission cascade of single photons. The biexciton is identified by its time-resolved photoluminescence, superlinearity and distinct polarization in micro-photoluminescence experiments. We evidence the cascaded nature of the emission process in a cross-correlation experiment, which yields a strong bunching behaviour. Our work paves the way to a new generation of quantum optics experiments with two-dimensional semiconductors.}, language = {en} }