@article{SendtnerDittrichHughesetal.1994, author = {Sendtner, Michael and Dittrich, F. and Hughes, R. A. and Thoenen, H.}, title = {Actions of CNTF and neurotrophins on degenerating motoneurons : preclinical studies and clinical implications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62939}, year = {1994}, abstract = {Spinal motoneurons innervating skeletal muscle were amongst the first neurons shown to require the presence of their target cells to develop appropriately. Isolated embryonie chick and rat motoneurons have been used to identify neurotrophic factors and cytokines capable of supporting the survival of developing motoneurons. Such factors include ciliary neurotrophic factor (CNTF), which is present physiologically in high amounts in myelinating Schwann cells of peripheral nerves, and brain-derived neurotrophic factor (BDNF) which is synthesized in skeletal muscle and, after peripheral nerve lesion. in Schwann cells. These factors have been further analyzed for their physiological significance in maintaining motoneuron function in vivo, and for their potential therapeutic usefulness in degenerative motoneuron disease. Both CNTF and BDNF are capable of rescuing injured facial motoneurons in newbom rats. Furthermore, CNTF prolongs survival and improves motor function of pmn mice, an animal model for degenerative motoneuron disease, by preventing degeneration of motoneuron axons and somata. Thus treatment of human motoneuron disease with neurotrophic factors should be possible, provided that rational means for application of these factors can be established considering also the appearance of potential side effects.}, subject = {Neurobiologie}, language = {en} } @article{SendtnerThoenenHughes1993, author = {Sendtner, Michael and Thoenen, Hans and Hughes, R. A.}, title = {Members of several gene families influence survival of rat motoneurons in vitro and in vivo}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42652}, year = {1993}, abstract = {The survival and functional maintenance of spinal motoneurons, both during the period of developmental cell death and in adulthood, have been shown to be dependent on trophic factors. In vitro experiments have previously been used to identify several survival factors for motoneurons, including CNTF, UF, and members of the neurotrophin, FGF, and IGF gene families. Some of these factors have also been shown to be active in vivo, either on chick motoneurons during embryonic development or on lesioned facial and spinal motoneurons of the newborn rat. Here we demonstrate that lesioned newborn rat facial motoneurons can be rescued by NT-4/5, IGF-I, and UF. Furthermore, in contrast to chick motoneurons, the survival of isolated embryonic rat motoneurons can be maintained by the neurotrophins BDNF, NT-3, and NT-4/5. IGF-I and FGF-5 were also active in this system, each supporting more than 50\% of the originally plated neurons. The responsiveness of motoneurons to multiple factors in vitro and in vivo suggests that motoneuron survival and function are regulated by the coordinated actions of members of different gene families.}, language = {en} } @article{SendtnerCarrollHoltmannetal.1994, author = {Sendtner, Michael and Carroll, P. and Holtmann, B and Hughes, R. A. and Thoenen, H.}, title = {Ciliary Neurotrophic Factor}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42545}, year = {1994}, abstract = {No abstract available}, language = {en} }