@article{WielandStrisselSchorleetal.2021, author = {Wieland, Annalena and Strissel, Pamela L. and Schorle, Hannah and Bakirci, Ezgi and Janzen, Dieter and Beckmann, Matthias W. and Eckstein, Markus and Dalton, Paul D. and Strick, Reiner}, title = {Brain and breast cancer cells with PTEN loss of function reveal enhanced durotaxis and RHOB dependent amoeboid migration utilizing 3D scaffolds and aligned microfiber tracts}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {20}, issn = {2072-6694}, doi = {10.3390/cancers13205144}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248443}, year = {2021}, abstract = {Background: Glioblastoma multiforme (GBM) and metastatic triple-negative breast cancer (TNBC) with PTEN mutations often lead to brain dissemination with poor patient outcome, thus new therapeutic targets are needed. To understand signaling, controlling the dynamics and mechanics of brain tumor cell migration, we implemented GBM and TNBC cell lines and designed 3D aligned microfibers and scaffolds mimicking brain structures. Methods: 3D microfibers and scaffolds were printed using melt electrowriting. GBM and TNBC cell lines with opposing PTEN genotypes were analyzed with RHO-ROCK-PTEN inhibitors and PTEN rescue using live-cell imaging. RNA-sequencing and qPCR of tumor cells in 3D with microfibers were performed, while scanning electron microscopy and confocal microscopy addressed cell morphology. Results: In contrast to the PTEN wildtype, GBM and TNBC cells with PTEN loss of function yielded enhanced durotaxis, topotaxis, adhesion, amoeboid migration on 3D microfibers and significant high RHOB expression. Functional studies concerning RHOB-ROCK-PTEN signaling confirmed the essential role for the above cellular processes. Conclusions: This study demonstrates a significant role of the PTEN genotype and RHOB expression for durotaxis, adhesion and migration dependent on 3D. GBM and TNBC cells with PTEN loss of function have an affinity for stiff brain structures promoting metastasis. 3D microfibers represent an important tool to model brain metastasizing tumor cells, where RHO-inhibitors could play an essential role for improved therapy.}, language = {en} } @article{JanzenSlavikZeheetal.2021, author = {Janzen, Dieter and Slavik, Benedikt and Zehe, Markus and Sotriffer, Christoph and Loos, Helene M. and Buettner, Andrea and Villmann, Carmen}, title = {Sesquiterpenes and sesquiterpenoids harbor modulatory allosteric potential and affect inhibitory GABA\(_{A}\) receptor function in vitro}, series = {Journal of Neurochemistry}, volume = {159}, journal = {Journal of Neurochemistry}, number = {1}, doi = {10.1111/jnc.15469}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259546}, pages = {101-115}, year = {2021}, abstract = {Naturally occurring compounds such as sesquiterpenes and sesquiterpenoids (SQTs) have been shown to modulate GABA\(_{A}\) receptors (GABA\(_{A}\)Rs). In this study, the modulatory potential of 11 SQTs at GABA\(_{A}\)Rs was analyzed to characterize their potential neurotropic activity. Transfected HEK293 cells and primary hippocampal neurons were functionally investigated using electrophysiological whole-cell recordings. Significantly different effects of β-caryophyllene and α-humulene, as well as their respective derivatives β-caryolanol and humulol, were observed in the HEK293 cell system. In neurons, the concomitant presence of phasic and tonic GABA\(_{A}\)R configurations accounts for differences in receptor modulation by SQTs. The in vivo presence of the γ\(_{2}\) and δ subunits is important for SQT modulation. While phasic GABA\(_{A}\) receptors in hippocampal neurons exhibited significantly altered GABA-evoked current amplitudes in the presence of humulol and guaiol, negative allosteric potential at recombinantly expressed α\(_{1}\)β\(_{2}\)γ\(_{2}\) receptors was only verified for humolol. Modeling and docking studies provided support for the binding of SQTs to the neurosteroid-binding site of the GABA\(_{A}\)R localized between transmembrane segments 1 and 3 at the (\(^{+}\)α)-(\(^{-}\)α) interface. In sum, differences in the modulation of GABA\(_{A}\)R isoforms between SQTs were identified. Another finding is that our results provide an indication that nutritional digestion affects the neurotropic potential of natural compounds.}, language = {en} } @article{KuhlemannBeliuJanzenetal.2021, author = {Kuhlemann, Alexander and Beliu, Gerti and Janzen, Dieter and Petrini, Enrica Maria and Taban, Danush and Helmerich, Dominic A. and Doose, S{\"o}ren and Bruno, Martina and Barberis, Andrea and Villmann, Carmen and Sauer, Markus and Werner, Christian}, title = {Genetic Code Expansion and Click-Chemistry Labeling to Visualize GABA-A Receptors by Super-Resolution Microscopy}, series = {Frontiers in Synaptic Neuroscience}, volume = {13}, journal = {Frontiers in Synaptic Neuroscience}, issn = {1663-3563}, doi = {10.3389/fnsyn.2021.727406}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251035}, year = {2021}, abstract = {Fluorescence labeling of difficult to access protein sites, e.g., in confined compartments, requires small fluorescent labels that can be covalently tethered at well-defined positions with high efficiency. Here, we report site-specific labeling of the extracellular domain of γ-aminobutyric acid type A (GABA-A) receptor subunits by genetic code expansion (GCE) with unnatural amino acids (ncAA) combined with bioorthogonal click-chemistry labeling with tetrazine dyes in HEK-293-T cells and primary cultured neurons. After optimization of GABA-A receptor expression and labeling efficiency, most effective variants were selected for super-resolution microscopy and functionality testing by whole-cell patch clamp. Our results show that GCE with ncAA and bioorthogonal click labeling with small tetrazine dyes represents a versatile method for highly efficient site-specific fluorescence labeling of proteins in a crowded environment, e.g., extracellular protein domains in confined compartments such as the synaptic cleft.}, language = {en} }