@article{ArchelosRoggenbuckSchneiderSchauliesetal.1993, author = {Archelos, J. J. and Roggenbuck, K. and Schneider-Schaulies, J{\"u}rgen and Toyka, K. V. and Hartung, H. P.}, title = {Detection and quantification of antibodies to the extracellular domain of Po during experimental allergic neuritis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54896}, year = {1993}, abstract = {Quantification of the peripheral nerve myelin glycoprotein PO and antibodies to PO is difficult due to insolubility of PO in physiological solutions. We have overcome this problern by using the water-soluble recombinant form of the extracellular domain of PO (PO-ED) and describe newly developed assays which allow detection and quantitation of PO and antibodies to PO, in serum and cerebraspinal fluid (CSF). These sensitive and specific assays based on the ELISA technique were used to study humoral immune responses to PO during experimental autoimmune ("allergic") neuritis (EAN). In order to establish these tests, monoclonal antiborlies to different epitopes of rodent and human PO-ED were produced. A two-antibody sandwich-ELISA allowing quantitation of PO Oower detection Iimit of 0.5 ngjml or 30 fmoljml) and an antibody-capture ELISA (lower detection Iimit 1 ng specific antibody jml) to detect antiborlies to PO in serum and CSF were developed. EAN was induced in rats by active immunization with bovine myelin or the neuritogenic protein P2 or by adoptive transfer using P2 specific CD4 positive T cells. Serum and CSF were assayed for the presence of PO-ED and antibodies to PO-ED or P2. Antibodies to PO-ED were detected during active myelin-induced EAN, but not during P2-induced or adaptive transfer EAN. The anti-PO-ED antibodies in the CSF showed a correJation with disease activity. In contrast, in the same model antibodies to P2 persisted long after the disease ceased. No soluble PO-Iike fragments could be found in serum or CSF during any of the three types of EAN. We conclude that PO may be a B-eeil epitope in EAN. These findings warrant a screen for antibodies to PO-ED in human immune neuropathies.}, subject = {Immunologie}, language = {en} } @article{ArchelosRoggenbuckSchneiderSchauliesetal.1993, author = {Archelos, JJ and Roggenbuck, K. and Schneider-Schaulies, J{\"u}rgen and Linington, C. and Toyka, KV and Hartung, H.-P.}, title = {Production and characterization of monoclonal antibodies to the extracellular domain of PO}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54889}, year = {1993}, abstract = {Seven monoclonal antibodies were raised against the immunoglobulin-like extracellular domain of PO (POED), the major protein of peripheral nervous system myelin. Mice were immunized with purified recombinant rat PO-ED. After fusion, 7 clones (POI-P07) recognizing either recombinant, rat, mouse, or human PO-ED were selected by ELlS A and were characterized by Western blot, immunohistochemistry, and a competition assay. Antibodies belonged to the IgG or IgM class, and P04-P07, reacted with PO in fresh-frozen and paraffin-embedded sections of human or rat peripheral nerve, but not with myelin proteins of the central nervous system of either species. Epitope specificity of the antibodies was determined by a competition enzyme-linked immunosorbent assay (ELISA) and a direct ELlS A using short synthetic peptides spanning the entire extracellular domain of PO. These assays showed that POl and P02 exhibiting the same reaction pattern in Western blot and immunohistochemistry reacted with different distant epitopes of PO. Furthermore, the monoclonal antibodies P05 and P06 recognized 2 different epitopes in close proximity within the neuritogenic extracellular sequence of PO. This panel of monoclonal antibodies, each binding to a different epitope of the extracellular domain of PO, will be useful for in vitro and in vivo studies designed to explore the role of PO during myelination and in demyelinating diseases of the peripheral nervous system.}, subject = {Immunologie}, language = {en} } @article{DunsterSchneiderSchauliesLoeffleretal.1994, author = {Dunster, L.M. and Schneider-Schaulies, J{\"u}rgen and L{\"o}ffler, S. and Lankes, W. and Schwartz-Albiez, R. and Lottspeich, F. and ter Meulen, V.}, title = {Moesin: a cell membrane protein linked with susceptibility to measles virus infection}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54931}, year = {1994}, abstract = {Measles virus is a highly contagious virus causing acute and persistent diseases in man, the receptor of which is still not weil characterized. We have isolated a monoclonal antibody (mAb), designated mAb 119, which specifically inhibits measles virus infection of susceptible celllines in a dosa-dependent manner. This antibody precipitates a protein with an apparent molecular mass of 75 kDa from 1251 surface-labeled cells and its epitope is present on human peripheral blood mononuclear cells, human celllines, and the African green monkey cellline Vero. Affinity chromatography of detergent-solubilized cell membrane proteins over a Sepharose column with covalently bound mAb 119 led to the partial purification of the 75-kOa protein. Preincubation of measles virus with this affinity-purified protein inhibited measles virus infection dose dependently. Aminoacid microseq,uencing of this protein revealed its identity with the human membrane-organizing extension spike protein moesin, a protein intra- and extracellularly associated with the plasma membrane of cells. Subsequently, an antibody raised against purified moesin (mAb 38/87) was also found to specifically inhibit measles virus infection of susceptible cells and confirmed our data obtained with mAb 119. Our data suggest that moesin is acting as a receptor for measles virus.}, subject = {Immunologie}, language = {en} } @phdthesis{Duttu2005, author = {Duttu, Vallabhapurapu Subrahmanya}, title = {Regulation of B lymphocyte terminal differentiation and death by the transcription factor Blimp-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17158}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {B lymphocyte induced maturation protein-1 (Blimp-1) und X-box-binding protein-1" (XBP-1) sind als Transkriptionsfaktoren unverzichtbar f{\"u}r die terminale Differenzierung von B-Lymphozyten zu Immunglobulin (Ig)-sezernierenden Plasmazellen. Ebenso stellen die unfolded protein response (UPR) und das Spleißen von XBP-1, beides ausgel{\"o}st durch erh{\"o}hte Ig-Produktion, entscheidende Schritte auf dem Weg zur Plasmazellentstehung dar. Allerdings ist das Molek{\"u}l/ sind die Molek{\"u}le nach wie vor unbekannt, die diesen beiden Ereignissen in der Signalkaskade vorgeschaltet sind. Da die ektope Expression von Blimp-1 in B-Zellen hinreicht, diese zu Plasmazellen zu differenzieren, erscheint es plausibel, dass Blimp-1 das Molek{\"u}l sein k{\"o}nnte, das die Ausl{\"o}sung einer UPR und das Spleißen von XBP-1 steuert. Dieser M{\"o}glichkeit wurde durch ektope Expression von Blimp-1 in der Maus-B-Zell-Lymphomlinie WEHI 231 und in prim{\"a}ren B-Zellen aus der Milz von M{\"a}usen nachgegangen. Die ektope Expression von Blimp-1 f{\"u}hrte in beiden Zelltypen zur Erh{\"o}hung der Ig Produktion, zum Spleißen von XBP-1 und zur Sekretion von Immunglobulinen. Interessanterweise war der N-terminale Anteil von Blimp-1, bestehend aus den Aminos{\"a}uren 1-751, hinreichend, um diese Effekte auszul{\"o}sen, w{\"a}hrend der C-Terminus, der die Aminos{\"a}uren 465-856 umfaßte, keinen Effekt hatte. Dar{\"u}berhinaus, wurde die Expression von BIP, dessen Gen ein UPR-Zielgen ist, durch ektope Expression von Blimp-1 bzw. dessen N-Terminus in prim{\"a}ren B-Zellen erh{\"o}ht. Diese Ergebnisse zeigen deutlich, dass Blimp-1, speziell dessen N-terminale Dom{\"a}ne, hinreichend ist, um eine UPR und die Prozessierung von XBP-1 auszul{\"o}sen, was zur Ig-Sekretion von B-Zellen f{\"u}hrt.}, subject = {B-Lymphozyt}, language = {en} } @phdthesis{Eckert2023, author = {Eckert, Ina-Nathalie}, title = {Molecular markers of myeloid-derived suppressor cells and their functional role for homing and in disease models in mice}, doi = {10.25972/OPUS-31997}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319974}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {MDSCs are suppressive immune cells with a high relevance in various pathologies including cancer, autoimmunity, and chronic infections. Surface marker expression of MDSCs resembles monocytes and neutrophils which have immunostimulatory functions instead of suppressing T cells. Therefore, finding specific surface markers for MDSCs is important for MDSC research and therapeutic MDSC manipulation. In this study, we analyzed if the integrin VLA-1 has the potential as a novel MDSC marker. VLA-1 was expressed by M-MDSCs but not by G-MDSCs as well as by Teff cells. VLA-1 deficiency did not impact iNOS expression, the distribution of M-MDSC and G-MDSC subsets, and the suppressive capacity of MDSCs towards na{\"i}ve and Teff cells in vitro. In mice, VLA-1 had no effect on the homing capability of MDSCs to the spleen, which is a major reservoir for MDSCs. Since the splenic red pulp contains collagen IV and VLA-1 binds collagen IV with a high affinity, we found MDSCs and Teff cells in this area as expected. We showed that T cell suppression in the spleen, indicated by reduced T cell recovery and proliferation as well as increased apoptosis and cell death, partially depended on VLA-1 expression by the MDSCs. In a mouse model of multiple sclerosis, MDSC injection prior to disease onset led to a decrease of the disease score, and this effect was significantly reduced when MDSCs were VLA-1 deficient. The expression of Sema7A by Teff cells, a ligand for VLA-1 which is implicated in negative T cell regulation, resulted in a slightly stronger Teff cell suppression by MDSCs compared to Sema7A deficient T cells. Live cell imaging and intravital 2-photon microscopy showed that the interaction time of MDSCs and Teff cells was shorter when MDSCs lacked VLA 1 expression, however VLA-1 expression had no impact on MDSC mobility. Therefore, the VLA-1-dependent interaction of MDSC and Teff cells on collagen IV in the splenic red pulp is implicated MDSC-mediated Teff cell suppression.}, subject = {Immunologie}, language = {en} } @article{GrummtWeinmannDorschSchneiderSchauliesetal.1986, author = {Grummt, F. and Weinmann-Dorsch, C. and Schneider-Schaulies, J{\"u}rgen and Lux, A.}, title = {Zinc as a second messenger of mitogenic induction}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54799}, year = {1986}, abstract = {DNA synthesis and adenosine(S')tetraphosphate(S ')adenosine (Ap.A) levels decrease in cells treated with EDTA. The inhibitory effect of EDTA can be reversed with micro molar amounts of ZnCI2• ZnCh in micromolar concentrations also inhibits Ap.A hydrolase and stimulates amino acid-dependent Ap.A synthesis, suggesting that Zn2+ is modulating intracellular Ap.A pools. Serum addition to GI-arrested cells enhances uptake of Zn, whereas serum depletion leads to a fivefold decrease of the rates of zinc uptake. These results are discussed by regarding Zn2+ as a putative 'second messenger' of mitogenic induction and Ap.A as a possible 'third messenger' and trigger of DNA synthesis.}, subject = {Immunologie}, language = {en} } @phdthesis{Gulde2022, author = {Gulde, Tobias Simon}, title = {Die molekulare Grundlage f{\"u}r die h{\"o}here Sensitivit{\"a}t regulatorischer CD4\(^+\) T-Zellen im Vergleich zu konventionellen CD4\(^+\) T-Zellen gegen{\"u}ber der Stimulation mit CD28 Superagonisten}, doi = {10.25972/OPUS-28396}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283962}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In Ratten und M{\"a}usen aktiviert der superagonistische anti-CD28 monoklonale Antik{\"o}rper (CD28SA) vorzugsweise regulatorische T-Zellen. In niedriger Dosierung f{\"u}hrt CD28SA zu einer fast ausschließlichen Aktivierung von regulatorischen T-Zellen (Tregs). Diese Beobachtung konnte inzwischen auch f{\"u}r menschliche Zellen in Zellkultur best{\"a}tigt werden. In gesunden und freiwilligen Testpersonen deutet die Zytokin-Antwort nach Applikationen von niedrigen CD28SA-Dosen darauf hin, dass sich diese Beobachtung auch in-vivo bewahrheitet. Eine Gabe von CD28SA in niedriger Dosierung, die zu einer exklusiven Aktivierung von regulatorischen T-Zellen f{\"u}hrt, k{\"o}nnte somit in der Behandlung von Autoimmunkrankheiten oder von entz{\"u}ndlichen Erkrankungen eingesetzt werden. Eine mechanistische Erkl{\"a}rung f{\"u}r dieses Ph{\"a}nomen blieb lange Zeit unklar. Die CD28SA-vermittelte T-Zell-Aktivierung ist abh{\"a}ngig von der Verst{\"a}rkung von basalen tonischen Signalen, die T-Zellen {\"u}ber ihren T-Zell-Rezeptor erhalten. Diese Tatsache f{\"u}hrte zu der Hypothese, dass die schwachen, tonischen Signale, die konventionelle CD4+ T-Zellen in Abwesenheit ihrer spezifischen Antigene {\"u}ber den T-Zell-Rezeptor erhalten, ein st{\"a}rkeres CD28 Signal f{\"u}r ihre Aktivierung ben{\"o}tigen als die selbstreaktiven regulatorischen T-Zellen, die ein st{\"a}rkeres Selbstpeptid-TCR Signal erhalten. In dieser Arbeit konnte gezeigt werden, dass die Blockade von MHC-Klasse-II-Molek{\"u}len in M{\"a}usen, in-vitro und in-vivo, den Vorteil der regulatorischen T-Zellen gegen{\"u}ber den konventionellen T-Zellen bez{\"u}glich der Antwort auf niedrige CD28SA Dosierungen, aufhebt.}, subject = {Regulatorischer T-Lymphozyt}, language = {de} } @article{JaffeyChanShaoetal.1992, author = {Jaffey, P. and Chan, L.-N. L. and Shao, J. and Schneider-Schaulies, J{\"u}rgen and Chan, T.-S.}, title = {Retinoic acid inhibition of serum-induced c-fos transcription in a fibrosarcoma cell line}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54863}, year = {1992}, abstract = {No abstract available}, subject = {Immunologie}, language = {en} } @phdthesis{MonzonCasanova2010, author = {Monz{\´o}n Casanova, Elisa}, title = {Rat iNKT Cells: Phenotype and Function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56526}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {iNKT cells are a population of T cells with unique characteristics. In contrast to most αβ T cells which recognize peptides presented by highly polymorphic MHC molecules, iNKT cells are reactive to glycolipids presented by CD1d, a non-polymorphic MHC-I like molecule. Moreover, whereas MHC-restricted αβ T cells bear highly variable receptors (TCRs) formed after somatic recombination of the V(D)J gene segments, the TCR of iNKT cells is formed by an invariant α chain, which always contains the same gene segments: AV14 and AJ18; and a β chain of limited BV gene usage: BV8S2, BV7 or BV2, in the mouse. This invariant α chain is the reason for which these cells are named "i" and the NK part of their name refers to the expression of receptors typical of natural killer (NK) cells. iNKT cells recognize glycolipids of endogenous and microbial origin. After activation they secrete large amounts of very different cytokines such as IFN-γ and IL-4 and thus influence immune responses and pathological conditions. One of the most potent iNKT cell agonists, recognized by the semi-invariant TCR, is the synthetic glycolipid α-Galactosylceramide (α-Gal). iNKT cells can be visualized using CD1d-multimeric complexes loaded with α-Gal and flow cytometry, since this reagent has enough avidity to stain these cells. Interestingly, mouse iNKT cells can be stained with human α-Gal-loaded CD1d oligomers and human iNKT cells can also be visualized with mouse α-Gal-loaded CD1d oligomers, indicating a high degree of conservation of the recognition of α-Gal presented by CD1d through evolution. Previous studies showed that rats have the genes necessary to build semi-invariant TCRs: They have a CD1d homologue; one or two BV8S2 homologues and interestingly, up to ten AV14 gene segments, which are highly conserved when compared to the mouse genes. Importantly, it has been shown at least for two of these AV14 gene segments that they can produce invariant TCRα chains which, when coexpressed with BV8-containing β chains, react to α-Gal presented by rat CD1d. Furthermore, ex vivo stimulation of primary splenocytes with α-Gal results in the secretion of IL-4 and IFN-γ. Surprisingly, rat semi-invariant TCRs do not recognize α-Gal presented by mouse CD1d and accordingly, mouse α-Gal-loaded CD1d tetramers failed to stain a discrete population of rat iNKT cells. Taking all together, despite that strong evidence suggested that iNKT cells are present in the rat, the direct identification of such population and the analysis of CD1d-restricted immune responses were still pending for this species. Hence the work presented in this doctoral thesis was aimed to identify iNKT cells, to analyze their phenotype and also to study the distribution and function of CD1d in the rat. For these purposes, we produced essential reagents which were still lacking such as rat specific anti-CD1d monoclonal antibodies and rat CD1d oligomers. Importantly, two of three anti-rat CD1d monoclonal antibodies (all of them generated in our laboratory before this thesis was initiated) also recognized mouse CD1d and therefore allowed a direct comparison of CD1d expression between rat and mouse. Whereas CD1d distribution in the hematopoietic system was found to be extremely similar between these two species; in non-lymphatic tissues important differences were observed. Interestingly, CD1d protein was detected at not yet described sites such as the rat exocrine pancreas and rat and mouse Paneth cells. These monoclonal antibodies did not only allowed the analysis of CD1d expression, but also the first demonstration of the function of rat CD1d as an antigen presenting molecule, since cytokine release in response to α-Gal was blocked when they were added to ex vivo cultures of rat primary cells. Staining of primary rat iNKT cells (possible now with the newly generated rat CD1d oligomers) revealed interesting similarities with human iNKT cells. First, we observed that rat iNKT cells are only a minority among all NKR-P1A/B positive T cells. Human iNKT cells constitute also a very small proportion of NKR-P1A (CD161) expressing T cells, whereas in mice inbred strains which express NKR-P1C (NK1.1), most of NKRP1C expressing T cells are iNKT cells. Second, the majority of rat iNKT cells are either CD4 or DN and only a small proportion expresses CD8β. These findings are similar to humans and different to mice which lack CD8+ iNKT cells. Third, analysis of various inbred rat strains demonstrated different iNKT cell frequencies which correlated with cytokine secretion after α-Gal stimulation of primary cells. In comparison to mice, iNKT cell numbers are markedly reduced in rats. In F344 rats, inbred rat strain which released the highest cytokine amounts after α-Gal stimulation, approximately 0.25\% and 0.1\% of total liver and spleen lymphocytes, respectively, are iNKT cells. In contrast, in LEW rats iNKT cells were practically absent and neither IL-4 nor IFN-γ were detected after stimulation of primary cells with α-Gal. Once more, these frequencies are very close to those observed in humans. Last, as reported for human peripheral blood cells, rat iNKT cells could be easily expanded in vitro by adding α-Gal to cultures of intrahepatic lymphocytes, whereas the expansion of mouse iNKT cells was not possible using the same protocol. The presence of a multimember AV14 gene segment family in the rat is an intriguing characteristic. These AV14 gene segments are extremely homologous except in the CDR2α region. Based on the amino acid sequence of this region they have been divided into two different types: Type I and II. A specific tissue distribution of the different types was proposed in the first study where the presence of several AV14 gene segments was described. We also analyzed the AV14 gene segment usage in F344 and LEW inbred rat strains. In F344 rats we found no preferential usage of either AV14 gene segment type in the spleen and the liver but type II AV14 gene segments appeared more frequently in the thymus. In contrast, LEW rats show a preferential usage of type I AV14 gene segments in all three compartments analyzed: Thymus, spleen and liver. Taken all together, the usage of newly generated reagents allowed to gain novel insights into CD1d expression in the rat and in the mouse and to directly identify rat iNKT cells for the first time. The phenotypic and functional analysis of rat iNKT cells revealed numerous similarities with human iNKT cells. These are of special interest, since rats serve to investigate several pathological conditions including models for autoimmune diseases. The possibility now to analyze iNKT cells and CD1d-restricted T cell responses in the rat might help to understand the pathogenesis of such diseases. In addition, the uncomplicated in vitro expansion and culture of rat iNKT cells should facilitate the analysis of the immunomoldulatory capacities of these cells.}, subject = {Ratte}, language = {en} } @phdthesis{Nussbaumer2006, author = {Nußbaumer, Judith}, title = {Die {\"U}bertragung von Toxoplasma gondii {\"u}ber die Muttermilch und deren immunologische Konsequenzen : Arbeiten im Rattenmodell}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23006}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {In dieser Arbeit wurden im Versuchstier Ratte die Transmission von T.gondii {\"u}ber die Muttermilch und deren immunologische Konsequenzen analysiert. Es konnte gezeigt werden, dass sich Rattenmilch als labordiagnostisches Medium eignet, wobei der direkte visuelle Parasitennachweis mit dem Lichtmikroskop, trotz verschiedender Aufbereitungsmethoden erfolglos blieb. Auch die PCR eignete sich f{\"u}r unsere Versuche nicht als Nachweismethode. Als geeignte und sensitive Methode f{\"u}r den Parasitennachweis in Rattenmilch stellte sich die Anzucht auf humanen Vorhautfibroblasten (HFF-Zellkultur)dar, wobei bereits zwei Tachyzoiten, die in vitro zu Milch nicht infizierter Tiere gegeben wurden, ausreichten, um eine HFF-Zelle zu infizieren. Immunisierungsexperimente wurden durchgef{\"u}hrt, um die Frage zu kl{\"a}ren, ob die im Serum von Jungtieren nachgewiesenen Toxoplasma-spezifischen Immunglobulinen {\"u}ber die Muttermilch aufgenommen worden sein k{\"o}nnten. Es gelang in Milch und Serum der Ammen, sowie im Serum der Jungtiere, T. gondii spezifische Immunglobuline nachzuweisen. Die Transmission des Parasiten als freier Tachyzoit wurde in dieser Arbeit simuliert. Tachyzoiten von T. gondii wurden in verschiedener Dosierung in Rattenmilch angereichert und 48 Stunden alten Ratten verabreicht. Die humorale und zellul{\"a}re Immunantwort wurde getestet. Tachyzoiten, die {\"u}ber die Milch aufgenommen wurden, k{\"o}nnen eine Infektion ausl{\"o}sen. Ratten wurden schließlich auf nat{\"u}rlichem Wege {\"u}ber Milch mit T. gondii infiziert, die humorale Immunantwort bestimmt und der Gehalt der infizierten Rattenmilch an Immunglobulinen {\"u}berpr{\"u}ft. Die Antik{\"o}rperkonzentration in Serum und Milch der Ammen zeigte eine deutliche Korrelation und im Serum der Nachkommen ließen sich ebenfalls Antik{\"o}rper nachweisen. Zeichen einer Infektion fanden sich jedoch nicht. Die Rattenmilch kann also T. gondii und toxoplasmaspezifische Immunglobuline enthalten, die von Nachkommen aufgenommen werden. Den Mechanismus der Parasiten{\"u}bertragung und die Rolle maternaler parasitenspezifischer Immunglobuline f{\"u}r Infektion und parasitenspezifische Immunantwort der Nachkommen gilt es jedoch noch zu kl{\"a}ren.}, language = {de} }