@article{FleglerSchneiderPrieschletal.2016, author = {Flegler, Andreas and Schneider, Michael and Prieschl, Johannes and Stevens, Ralph and Vinnay, Thomas and Mandel, Karl}, title = {Continuous flow synthesis and cleaning of nano layered double hydroxides and the potential of the route to adjust round or platelet nanoparticle morphology}, series = {RSC Advances}, volume = {6}, journal = {RSC Advances}, number = {62}, doi = {10.1039/c6ra09553d}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191305}, pages = {57236-57244}, year = {2016}, abstract = {Here, we report a continuous flow synthesis of nano LDH, comprising a continuous precipitation process using static mixers and followed by an immediate cleaning process via a semi-continuous centrifuge to obtain the final product in one-go. Via this synthesis setup, it is possible to independently vary the concentrations of the reactants during precipitation and at the same time ensure constant reaction conditions and an immediate "quenching" of the precipitate due to "on the flow"-washing. We found that this paves the way to adjust the synthesis parameters in a way that the final morphology of the nano-LDH particles can be controlled to be either round or platelet-like.}, language = {en} } @article{SzczerbaZukrowskiPrzybylskietal.2016, author = {Szczerba, Wojciech and Zukrowski, Jan and Przybylski, Marek and Sikora, Marcin and Safonova, Olga and Shmeliov, Aleksey and Nicolosi, Valeria and Schneider, Michael and Granath, Tim and Oppmann, Maximilian and Straßer, Marion and Mandel, Karl}, title = {Pushing up the magnetisation values for iron oxide nanoparticles via zinc doping: X-ray studies on the particle's sub-nano structure of different synthesis routes}, series = {Physical Chemistry Chemical Physics}, volume = {18}, journal = {Physical Chemistry Chemical Physics}, number = {36}, doi = {10.1039/c6cp04221j}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187390}, pages = {25221-25229}, year = {2016}, abstract = {The maximum magnetisation (saturation magnetisation) obtainable for iron oxide nanoparticles can be increased by doping the nanocrystals with non-magnetic elements such as zinc. Herein, we closely study how only slightly different synthesis approaches towards such doped nanoparticles strongly influence the resulting sub-nano/atomic structure. We compare two co-precipitation approaches, where we only vary the base (NaOH versus NH\(_3\)), and a thermal decomposition route. These methods are the most commonly applied ones for synthesising doped iron oxide nanoparticles. The measurable magnetisation change upon zinc doping is about the same for all systems. However, the sub-nano structure, which we studied with Mossbauer and X-ray absorption near edge spectroscopy, differs tremendously. We found evidence that a much more complex picture has to be drawn regarding what happens upon Zn doping compared to what textbooks tell us about the mechanism. Our work demonstrates that it is crucial to study the obtained structures very precisely when "playing'' with the atomic order in iron oxide nanocrystals.}, language = {en} }