@article{SchartlBarnekow1982, author = {Schartl, Manfred and Barnekow, Angelika}, title = {The expression in eukaryotes of a tyrosine kinase which is reactive with pp60v-src antibodies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86208}, year = {1982}, abstract = {All specimens of Eumetazoa and Parazoa, ranging from mammals, birds, teleosts, sharks, lampreys, amphioxus, insects, down to sponges showed the pp60c-src associated kinase activity, indicating that c-src, which is the cellular homologue of the oncogene v-src of Rous sarcoma virus (RSV) is probably present in all multicellular animals. Protozoa and plants did not show pp60c-src: kinase activity. The degree of c-src expression depends on the taxonomic rank of the Eumetazoa tested, and is organ-specific with nervaus tissues displaying the highest kinase activities. In the central nervous system of mammals and birds we found a high c-src expression, and in that of the lampreys, amphioxus, and insects the lowest. Unexpectedly, total extracts of sponges showed an amount of pp60c-src kinase activity similar to that of brain cell extracts of mammals and birds. These findings suggest that pp60c-src is a phylogenetic old protein that might have evolved together with the multicellular organisation of Metazoa, and that might be of importance in proliferation and differentiation of nontransformed cells.}, subject = {Protein-Tyrosin-Kinasen}, language = {en} } @incollection{ShephardHegiLutz1987, author = {Shephard, S. E. and Hegi, M. E. and Lutz, Werner K.}, title = {In-vitro assays to detect alkylating and mutagenic activities of dietary components nitrosated in situ}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86194}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1987}, abstract = {Nitrosation of dietary components has been combined with the 4-(para-nitrobenzyl)pyridine (NBP) colorimetric test for screening alkylating agents and with the Ames test for the detection of mutagenic activity. This allowed the investigation of short-hved nitrosation products of dietary components which generate electrophilic degradation products requiring no metabolic activation (natural amino acids and some derivatives, ureas, guanidines, primary alkyl and aryl amines). In a first system, precursor, nitrous acid and NBP were present simultaneously. All amino acids tested, except glutamic acid and glutamine, gave positive results. The reactivities spanned more than three orders of magnitude, with the aromatic amino acids and methionine the most active; two primary amines, tryptamine and histamine, were also strongly reactive. All guanidines tested, except the amino acid arginine, gave negative results. A second system consisted of two phases: NBP was added only after destruction of residual nitrite and adjustment of the pH to neutrality. This system was useful for the study of ureas, which are stable in acid but not in neutral media. The range of responses covered more than two orders of magnitude. Most amino acids and primary amines also gave positive results, but could be assessed only after analysing the kinetics of the competing reactions and choosing appropriate reaction times. In a third system, Salmonella typhimurium strain TA1OO replaced NBP. Representatives of the class of amino acids, ureas, the primary amine tryptamine, and aniline became higbly mutagenic upon nitrosation. Methylguanidine was only weakly mutagenic under the present assay conditions. The results indicate that further studies with unstable nitrosation products of dietary components are required to understand more thoroughly the role of endogenous nitrosation in gastric cancer.}, subject = {Medizin}, language = {en} } @incollection{ShephardSchlatterLutz1987, author = {Shephard, S. E. and Schlatter, C. and Lutz, Werner K.}, title = {Model risk analysis of nitrosatable compounds in the diet as precursors of potential endogenous carcinogens}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86188}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1987}, abstract = {The potential health risk posed by the endogenous formation of N-nitroso compounds (NOC) from nitrosation of dietary ureas, guanidines, amides, amino acids and amanes (primary, secondary and aromatic) was estimated according to the model: Risk = ( daily intake of precursor] X (gastric concentration of nitrite ]n X [nitrosatability rate constant] X [cilrcinogenicity of derivative]. The daily intakes ofthese compound classes span five orders ofmagnitude (100 g/day amides, top; 1-10 mg/day secondary amines, ureas, bottom); the nitrosation rate constants span seven orders of magnitude (aryl amines, ureas, top; amides, secondary amines, bottom); and the carcinogenicity estimates span a 10 000-fold range from 'very strong' to 'virtually noncarcinogenic'. The resulting risk estimates likewise span an enormous range (nine orders of magnitude ): dietary ureas and aromatic amines combined with high nitrite concentration could pose as great a risk as the intake of preformed N-nitrosodimethylamine in the diet. In contrast, the risk posed by the in-vivo nitrosation of primary and secondary amines is probably negligible. The risk contributed by amides (including protein), guanidines and primary amino acids is intermediate between these two extremes.}, subject = {Risikoanalyse}, language = {en} } @article{SchartlHolsteinRobertsonetal.1989, author = {Schartl, Manfred and Holstein, Thomas and Robertson, Scott M. and Barnekow, Angelika}, title = {Preferential expression of a pp60c-src related protein tyrosine kinase activity in nerve cells of the early metazoan Hydra (Coelenterates)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86179}, year = {1989}, abstract = {It has been suggested that the proto-oncogene c-src plays a functional role in developing neurons, and in the mature nerve cells of higher vertebrales. The coelenterate Hydra represents tbe most primitive known organism possessing nerve cells. With Southern blot hybridizations we have demonstrated src-related sequences in Hydra. Antisera specific for the c-src gene product (pp60 c-src) of birds and mammals precipitate a protein from Hydra cell extracts with a tyrosine-specific protein kinase activity. Studies of tissues and cells fractionated from a temperature sensitive mutant of Hydra which is depleted of interstitial (including nerve) cells at tbe non-permissive temperature, have indicated the src-like kinase of Hydra to be preferentially expressed in nerve cells. The high conservation of structural features and of the expression pattern indicates a basic function for pp60c-src in neurons.}, subject = {Protein-Tyrosin-Kinasen}, language = {en} } @incollection{KlotzKeilZimmeretal.1989, author = {Klotz, Karl-Norbert and Keil, Roger and Zimmer, Franz-Josef and Schwabe, Ulrich}, title = {Modulation of (\SH) DPCPX binding to membrane-bound ans solubilized A1 adenosine receptors by guanine nucleotides}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86153}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1989}, abstract = {No abstract available}, subject = {Adenosinrezeptor}, language = {en} } @article{MorschhaeuserVetterKorhonenetal.1993, author = {Morschh{\"a}user, Joachim and Vetter, Viktoria and Korhonen, Timo and Uhlin, Bernt Eric and Hacker, J{\"o}rg}, title = {Regulation and binding properties of S fimbriae cloned from E. coli strains causing urinary tract infection and meningitis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86140}, year = {1993}, abstract = {S fimbriae are able to recognize receptor molecules containing sialic acid and are produced by pathogenic E. coli strains causing urinary tract infection and menigitis. In order to characterize the corresponding genetic determinant, termed S fimbrial adhesin ( sfa) gene duster, we have cloned the S-specific genes from a urinary pathogen and from a meningitis isolate. Nine genes are involved in the production of S fimbriae, two of these, sfaB and sfaC code for regulatory proteins being necessary for the expression of S fimbriae. Two promoters, PB and Pc, are located in front of these genes. Transcription of the sfa determinant is influenced by activation of the promotersvia SfaB and SfaC, the action of the H-NS protein and an RNaseE-specific mRNA processing. In addition, a third promoter, P A• located in front of the major subunit gene sfaA, can be activated under special circumstances. Four genes of the sfa determinant code for the subunit-specific proteins, SfaA (16 kda), SfaG (17 kda), SfaS (14 kda) and SfaH (29 kda). It was demonstrated that the protein SfaA is the major subunit protein while SfaS is identical to the sialic-acid-specific adhesin of S fimbriae. The introduction of specific mutations into sfaS revealed that a region of six amino acids of the adhesin which includes two lysine and one arginine residues is involved in the receptor specific interaction of S fimbriae. Additionally, it has been shown that SfaS is necessary for the induction of fimbriation while SfaH plays a role in the stringency of binding of S fimbriae to erythrocytes.}, subject = {Escherichia coli}, language = {en} } @article{TschaepeBenderOttetal.1992, author = {Tsch{\"a}pe, Helmut and Bender, Larisa and Ott, Manfred and Wittig, Walter and Hacker, J{\"o}rg}, title = {Restriction fragments length polymorphism and virulence pattern of the veterinary pathogen Escherichia coli O139:K82:H1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86131}, year = {1992}, abstract = {Escherichia coli 0139: K82: H1 strains originating from outbreaks and single cases of oedema disease in pigs were characterized by their genomic restriction fragment length polymorphism (RFLP), their virulence pattern, and by the occurrence as well as the genomic distribution of the determinants for hemolysin (hly) and verotoxins (shiga-like toxins; sltI, sltII). Whereas the RFLPs revealed considerable variation among the E. coli 0139: K82: H1 isolates depending the origin and epidemic source of the strains, the virulence gene slt II was found to be present in nearly all strains in a particular chromosomal region. Similar to RFLPs, the plasmid profiles are useful for epidemiological analysis.}, subject = {Escherichia coli}, language = {en} } @incollection{SpielmannArendKlotzetal.1991, author = {Spielmann, W. S. and Arend, L. J. and Klotz, Karl-Norbert and Schwabe, U.}, title = {Adenosine control of the renal Collecting tubule: receptors and signaling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86129}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1991}, abstract = {No abstract available.}, subject = {Adenosin}, language = {en} } @incollection{SpielmannArendKlotzetal.1990, author = {Spielmann, W.-S. and Arend, L. J. and Klotz, Karl-Norbert and Schwabe, U.}, title = {Adenosine receptors and singnaling in the kidney}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86114}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1990}, abstract = {No abstract available.}, subject = {Adenosinrezeptor}, language = {en} } @incollection{LohseKlotzMaureretal.1990, author = {Lohse, Martin J. and Klotz, Karl-Norbert and Maurer, K. and Ott, I. and Schwabe, Ulrich}, title = {Effects of adenosine on mast cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86101}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1990}, abstract = {No abstract available}, subject = {Adenosin}, language = {en} }