@article{MenzelBluethgenTolaschetal.2013, author = {Menzel, Florian and Bl{\"u}thgen, Nico and Tolasch, Till and Conrad, J{\"u}rgen and Beifuss, Uwe and Beuerle, Till and Schmitt, Thomas}, title = {Crematoenones - a novel substance class exhibited by ants functions as appeasement signal}, series = {Frontiers in Zoology}, volume = {10}, journal = {Frontiers in Zoology}, number = {32}, issn = {1742-9994}, doi = {10.1186/1742-9994-10-32}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122595}, year = {2013}, abstract = {Background: Parasitic, commensalistic, and mutualistic guests in social insect colonies often circumvent their hosts' nestmate recognition system to be accepted. These tolerance strategies include chemical mimicry and chemical insignificance. While tolerance strategies have been studied intensively in social parasites, little is known about these mechanisms in non-parasitic interactions. Here, we describe a strategy used in a parabiotic association, i.e. two mutualistic ant species that regularly share a common nest although they have overlapping food niches. One of them, Crematogaster modiglianii, produces an array of cuticular compounds which represent a substance class undescribed in nature so far. They occur in high abundances, which suggests an important function in the ant's association with its partner Camponotus rufifemur. Results: We elucidated the structure of one of the main compounds from cuticular extracts using gas chromatography, mass spectrometry, chemical derivatizations and nuclear magnetic resonance spectroscopy (NMR). The compound consists of two fused six-membered rings with two alkyl groups, one of which carries a keto functionality. To our knowledge, this is the first report on the identification of this substance class in nature. We suggest naming the compound crematoenone. In behavioural assays, crematoenones reduced interspecific aggression. Camponotus showed less aggression to allospecific cuticular hydrocarbons when combined with crematoenones. Thus, they function as appeasement substances. However, although the crematoenone composition was highly colony-specific, interspecific recognition was mediated by cuticular hydrocarbons, and not by crematoenones. Conclusions: Crematenones enable Crematogaster to evade Camponotus aggression, and thus reduce potential costs from competition with Camponotus. Hence, they seem to be a key factor in the parabiosis, and help Crematogaster to gain a net benefit from the association and thus maintain a mutualistic association over evolutionary time. To our knowledge, putative appeasement substances have been reported only once so far, and never between non-parasitic species. Since most organisms associated with social insects need to overcome their nestmate recognition system, we hypothesize that appeasement substances might play an important role in the evolution and maintenance of other mutualistic associations as well, by allowing organisms to reduce costs from antagonistic behaviour of other species.}, language = {en} } @article{StrubeBlossBrownSpaetheetal.2015, author = {Strube-Bloss, Martin F. and Brown, Austin and Spaethe, Johannes and Schmitt, Thomas and R{\"o}ssler, Wolfgang}, title = {Extracting the Behaviorally Relevant Stimulus: Unique Neural Representation of Farnesol, a Component of the Recruitment Pheromone of Bombus terrestris}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {9}, doi = {10.1371/journal.pone.0137413}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125875}, pages = {e0137413}, year = {2015}, abstract = {To trigger innate behavior, sensory neural networks are pre-tuned to extract biologically relevant stimuli. Many male-female or insect-plant interactions depend on this phenomenon. Especially communication among individuals within social groups depends on innate behaviors. One example is the efficient recruitment of nest mates by successful bumblebee foragers. Returning foragers release a recruitment pheromone in the nest while they perform a 'dance' behavior to activate unemployed nest mates. A major component of this pheromone is the sesquiterpenoid farnesol. How farnesol is processed and perceived by the olfactory system, has not yet been identified. It is much likely that processing farnesol involves an innate mechanism for the extraction of relevant information to trigger a fast and reliable behavioral response. To test this hypothesis, we used population response analyses of 100 antennal lobe (AL) neurons recorded in alive bumblebee workers under repeated stimulation with four behaviorally different, but chemically related odorants (geraniol, citronellol, citronellal and farnesol). The analysis identified a unique neural representation of the recruitment pheromone component compared to the other odorants that are predominantly emitted by flowers. The farnesol induced population activity in the AL allowed a reliable separation of farnesol from all other chemically related odor stimuli we tested. We conclude that the farnesol induced population activity may reflect a predetermined representation within the AL-neural network allowing efficient and fast extraction of a behaviorally relevant stimulus. Furthermore, the results show that population response analyses of multiple single AL-units may provide a powerful tool to identify distinct representations of behaviorally relevant odors.}, language = {en} } @article{LeonhardtSchmittBluethgen2011, author = {Leonhardt, Sara D. and Schmitt, Thomas and Bl{\"u}thgen, Nico}, title = {Tree Resin Composition, Collection Behavior and Selective Filters Shape Chemical Profiles of Tropical Bees (Apidae: Meliponini)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69035}, year = {2011}, abstract = {The diversity of species is striking, but can be far exceeded by the chemical diversity of compounds collected, produced or used by them. Here, we relate the specificity of plant-consumer interactions to chemical diversity applying a comparative network analysis to both levels. Chemical diversity was explored for interactions between tropical stingless bees and plant resins, which bees collect for nest construction and to deter predators and microbes. Resins also function as an environmental source for terpenes that serve as appeasement allomones and protection against predators when accumulated on the bees' body surfaces. To unravel the origin of the bees' complex chemical profiles, we investigated resin collection and the processing of resin-derived terpenes. We therefore analyzed chemical networks of tree resins, foraging networks of resin collecting bees, and their acquired chemical networks. We revealed that 113 terpenes in nests of six bee species and 83 on their body surfaces comprised a subset of the 1,117 compounds found in resins from seven tree species. Sesquiterpenes were the most variable class of terpenes. Albeit widely present in tree resins, they were only found on the body surface of some species, but entirely lacking in others. Moreover, whereas the nest profile of Tetragonula melanocephala contained sesquiterpenes, its surface profile did not. Stingless bees showed a generalized collecting behavior among resin sources, and only a hitherto undescribed species-specific ''filtering'' of resin-derived terpenes can explain the variation in chemical profiles of nests and body surfaces fromdifferent species. The tight relationship between bees and tree resins of a large variety of species elucidates why the bees' surfaces contain a much higher chemodiversity than other hymenopterans.}, subject = {Stachellose Biene}, language = {en} } @article{DrescherBluethgenSchmittetal.2010, author = {Drescher, Jochen and Bluethgen, Nico and Schmitt, Thomas and Buehler, Jana and Feldhaar, Heike}, title = {Societies Drifting Apart? Behavioural, Genetic and Chemical Differentiation between Supercolonies in the Yellow Crazy Ant Anoplolepis gracilipes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68573}, year = {2010}, abstract = {Background: In populations of most social insects, gene flow is maintained through mating between reproductive individuals from different colonies in periodic nuptial flights followed by dispersal of the fertilized foundresses. Some ant species, however, form large polygynous supercolonies, in which mating takes place within the maternal nest (intranidal mating) and fertilized queens disperse within or along the boundary of the supercolony, leading to supercolony growth (colony budding). As a consequence, gene flow is largely confined within supercolonies. Over time, such supercolonies may diverge genetically and, thus, also in recognition cues (cuticular hydrocarbons, CHC's) by a combination of genetic drift and accumulation of colony-specific, neutral mutations. Methodology/Principal Findings: We tested this hypothesis for six supercolonies of the invasive ant Anoplolepis gracilipes in north-east Borneo. Within supercolonies, workers from different nests tolerated each other, were closely related and showed highly similar CHC profiles. Between supercolonies, aggression ranged from tolerance to mortal encounters and was negatively correlated with relatedness and CHC profile similarity. Supercolonies were genetically and chemically distinct, with mutually aggressive supercolony pairs sharing only 33.1\%617.5\% (mean 6 SD) of their alleles across six microsatellite loci and 73.8\%611.6\% of the compounds in their CHC profile. Moreover, the proportion of alleles that differed between supercolony pairs was positively correlated to the proportion of qualitatively different CHC compounds. These qualitatively differing CHC compounds were found across various substance classes including alkanes, alkenes and mono-, di- and trimethyl-branched alkanes. Conclusions: We conclude that positive feedback between genetic, chemical and behavioural traits may further enhance supercolony differentiation through genetic drift and neutral evolution, and may drive colonies towards different evolutionary pathways, possibly including speciation.}, subject = {Ameisen}, language = {en} } @phdthesis{Schmitt2004, author = {Schmitt, Thomas}, title = {Communication in the hymenoptera : chemistry, ecology and evolution}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-11267}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Insects exhibit complex systems of communication with chemical signalling being the most important mode. Although there are many studies on chemical communication in insects, the evolution of chemical signals is not well understood. Due to the conflict of interests between individuals, different selective pressures might act on sender and receiver. In this thesis I investigate different types of communication where either the sender, the receiver or both parties yield benefits. These studies were conducted with one digger wasp species, honeybees, one chrysidid wasp, and three ant species. Senders might benefit by exploiting existing preferences of receivers. Such sensory exploitation might influence the evolution of male signals that are designed to attract females. The sex pheromone of male European beewolves Philanthus triangulum (Hymenoptera, Crabronidae) might have evolved according to the sensory exploitation hypothesis. A three-step scenario is supported by our studies. First, a major component of the honeybee alarm pheromone, (Z)-11-eicosen-1-ol, is also found on the cuticles and in the air surrounding foraging honeybees. Second, it could be shown, that (Z)-11- eicosen-1-ol plays a crucial role as kairomone for prey identification of honeybees by beewolf females. Third, a reanalysis of the beewolf male sex pheromone shows a remarkable similarity of compounds between the pheromone and the honeybee cuticle, besides the co-occurrence of (Z)-11-eisosen-ol. The majority of the cuticular hydrocarbons of honeybees occur also in the headspace of foraging workers. These results strongly support the hypothesis that beewolf males evolved a pheromone that exploits the females' pre-existing sensory sensitivity. In addition, the male sex pheromone shows a significantly higher similarity among brothers than among non-related individuals, which might enable beewolf females to discriminate against brothers and avoid detrimental effects of breeding. Together with the studies on the possible sensory exploitation this result shows that both, male and female beewolves probably gain more benefits than costs from the pheromone communication and, thus, the communication system as a whole can be regarded as cooperative. To maintain the reproductive division of labour in eusocial colonies, queens have to signal their presence and fecundity. In the ant Camponotus floridanus (Hymenoptera, Formicidae) queens mark their own eggs with a distinctive pattern of cuticular hydrocarbons. Two different hypotheses have been developed. One suggests a form of worker manipulation by the queen. The alternative hypothesis assumes a cooperative signal that provides information on the condition of the queen. The results of our investigation clearly favour the latter hypothesis. Chemical mimicry is a form of non-cooperative communication that benefits predominantly the sender. We provided conclusive evidence that the cockoo wasp, Hedychrum rutilans (Hymenoptera, Chrysididae), the primary brood parasitoid of Philanthus triangulum, evades recognition by beewolf females most probably by chemical mimicry of the odour of its host. Furthermore, the adaptation of the chemical signature in the social ant parasite Protomognathus americanus (Hymenoptera, Formicidae) to its Leptothorax (Hymenoptera, Formicidae) hosts was investigated. Although this parasite is principally adapted to its hosts' cuticular hydrocarbon profile, there are still pronounced differences between the profiles of parasites and hosts. This might be explained by the trade-off, which the parasites faces when confronted locally with two host species with different cuticular hydrocarbon profiles. Non-cooperative communication in the sense that only receivers benefit was discovered in the exploitation of honeybees volatile cuticular hydrocarbons by beewolf females. By using emitted (Z)-11-eicosen-1-ol as a kairomone, the receiver, the beewolf female, yields the benefits and the sender, the honeybee prey, bears all the costs. The results of these studies contribute to the understanding of the evolution of cooperative and non-cooperative communication with chemical signals taking into account differential benefits for sender and/or receiver.}, subject = {Hautfl{\"u}gler}, language = {en} }