@article{RiveroSeltenSichetal.2015, author = {Rivero, O and Selten, MM and Sich, S and Popp, S and Bacmeister, L and Amendola, E and Negwer, M and Schubert, D and Proft, F and Kiser, D and Schmitt, AG and Gross, C and Kolk, SM and Strekalova, T and van den Hove, D and Resink, TJ and Kasir, N Nadif and Lesch, KP}, title = {Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition}, series = {Translational Psychiatry}, volume = {5}, journal = {Translational Psychiatry}, number = {e655}, doi = {10.1038/tp.2015.152}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145218}, year = {2015}, abstract = {Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo) phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13\(^{-/-}\) mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13\(^{-/-}\) mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism.}, language = {en} } @phdthesis{Thuy2015, author = {Thuy, Elisabeth}, title = {Der Einfluss einer lebenslangen Defizienz in der Serotoninsynthese auf die neuronale Aktivierung des Hippocampus nach Furchtkonditionierungstraining}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138766}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Ver{\"a}nderungen des zentralen serotonergen Systems k{\"o}nnen mit diversen psychiatrischen Krankheiten wie z. B. Depressionen, Aufmerksamkeitsdefizit/ Hyperaktivit{\"a}ts-St{\"o}rung (ADHS), Phobien oder Panik- und Angstst{\"o}rungen assoziiert werden. Die fortlaufende Untersuchung des Neurotransmitters Serotonin (5-HT) und seine Bedeutung f{\"u}r physiologische und verhaltens- bezogene Prozesse ist daher unerl{\"a}sslich. Tiermodelle, die auf Ausschaltung elementarer oder assoziierter Gene des serotonergen Systems beruhen, sind infolgedessen eine ausgezeichnete M{\"o}glichkeit anatomische, (patho)physiolo- gische und verhaltensbezogene Auswirkungen eines fehlgeleiteten serotoner- gen Systems zu untersuchen und zu analysieren. Aufgrund ihrer großen Be- deutung f{\"u}r Lern- und Ged{\"a}chtnisprozesse steht die Hirnregion des dorsalen Hippocampus im Fokus dieser Dissertation. Die Analyse umfasste jeweils die gesamte Hirnstruktur des Hippocampus bzw. seine Unterregionen, Gyrus dentatus (DG), Cornu Ammonis (CA)1 und CA3. Die Zielsetzung dieser Arbeit war die Untersuchung zellul{\"a}rer bzw. molekularer Ver{\"a}nderungen von konstitutiven Tryptophanhydroxylase 2 (Tph2) knockout (KO) M{\"a}usen. Durch die Inaktivierung von Tph2 und damit dem geschwindig- keitsbestimmenden Enzym (TPH2) der Serotoninsynthese, wurde im zentralen Nervensystem (ZNS) der KO M{\"a}use ein Mangel von 5-HT festgestellt. Der dorsale Hippocampus wurde auf zellspezifische Ver{\"a}nderungen nach dem Furchtkonditionierungstest analysiert. Die Reaktion der Neurone in den drei Unterregionen der Hirnstruktur wurde durch Immunofluoreszenzf{\"a}rbung des „immediate-early" Genprodukts c-fos bzw. des Calcium-bindenden Proteins Parvalbumin untersucht. Es wurde dabei zum einen die absolute Zellzahl in den Strukturen erfasst und zum anderen die Analyse bez{\"u}glich des Volumens vorgenommen. Die Zelldichte von c-Fos wies signifikante Unterschiede zwischen den Gruppen im gesamten dorsalen Hippocampus und bei genauerer Betrachtung in der Unterregion des DG auf. Die Tph2-/- M{\"a}use zeigten nach dem Furchtkonditionierungstest eine pr{\"a}gnante Erh{\"o}hung der aktivierten Zellen. Es scheint, dass 5-HT eine zu starke Aktivierung des dorsalen Hippocampus verhindert um schlechte kontextbezogene Ged{\"a}chtnisinhalte nicht zu verfesti- gen. Dabei inhibiert 5-HT Zellen im DG und der CA1 Region die nicht zu den Parvalbumin-immunoreaktiven GABAergen Interneuronen geh{\"o}ren.}, subject = {Serotonin}, language = {de} } @article{ClineCostaNunesCespuglioetal.2015, author = {Cline, Brandon H. and Costa-Nunes, Joao P. and Cespuglio, Raymond and Markova, Natalyia and Santos, Ana I. and Bukhman, Yury V. and Kubatiev, Aslan and Steinbusch, Harry W. M. and Lesch, Klaus-Peter and Strekalova, Tatyana}, title = {Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression}, series = {Frontiers in Behavioral Neuroscience}, volume = {9}, journal = {Frontiers in Behavioral Neuroscience}, number = {37}, doi = {10.3389/fnbeh.2015.00037}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143992}, year = {2015}, abstract = {Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naive DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naive animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies.}, language = {en} } @article{JuhaszGondaHullametal.2015, author = {Juhasz, Gabriella and Gonda, Xenia and Hullam, Gabor and Eszlari, Nora and Kovacs, David and Lazary, Judit and Pap, Dorottya and Petschner, Peter and Elliott, Rebecca and Deakin, John Francis William and Muir Anderson, Ian and Antal, Peter and Lesch, Klaus-Peter and Bagdy, Gyorgy}, title = {Variability in the effect of 5-HTTLPR on depression in a large European population: the role of age, symptom profile, type and intensity of life stressors}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0116316}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143703}, pages = {e0116316}, year = {2015}, abstract = {Background Although 5-HTTLPR has been shown to influence the risk of life stress-induced depression in the majority of studies, others have produced contradictory results, possibly due to weak effects and/or sample heterogeneity. Methods In the present study we investigated how age, type and intensity of life-stressors modulate the effect of 5-HTTLPR on depression and anxiety in a European population cohort of over 2300 subjects. Recent negative life events (RLE), childhood adversity (CHA), lifetime depression, Brief Symptoms Inventory (BSI) depression and anxiety scores were determined in each subject. Besides traditional statistical analysis we calculated Bayesian effect strength and relevance of 5-HTTLPR genotypes in specified models. Results The short (s) low expressing allele showed association with increased risk of depression related phenotypes, but all nominally significant effects would turn to non-significant after correction for multiple testing in the traditional analysis. Bayesian effect strength and relevance analysis, however, confirmed the role of 5-HTTLPR. Regarding current (BSI) and lifetime depression 5-HTTLPR-by-RLE interactions were confirmed. Main effect, with other words direct association, was supported with BSI anxiety. With more frequent RLE the prevalence or symptoms of depression increased in ss carriers. Although CHA failed to show an interaction with 5-HTTLPR, in young subjects CHA sensitized towards the depression promoting effect of even mild RLE. Furthermore, the direct association of anxiety with the s allele was driven by young (\(\leq\)30) individuals. Limitations Our study is cross-sectional and applies self-report questionnaires. Conclusions Albeit 5-HTTLPR has only weak/moderate effects, the s allele is directly associated with anxiety and modulates development of depression in homogeneous subgroups.}, language = {en} } @article{BoddenRichterSchreiberetal.2015, author = {Bodden, Carina and Richter, S. Helene and Schreiber, Rebecca S. and Kloke, Vanessa and Gerß, Joachim and Palme, Rupert and Lesch, Klaus-Peter and Lewejohann, Lars and Kaiser, Sylvia and Sachser, Norbert}, title = {Benefits of adversity?! How life history affects the behavioral profile of mice varying in serotonin transporter genotype}, series = {Frontiers in Behavioral Neuroscience}, volume = {9}, journal = {Frontiers in Behavioral Neuroscience}, number = {47}, doi = {10.3389/fnbeh.2015.00047}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143723}, year = {2015}, abstract = {Behavioral profiles are influenced by both positive and negative experiences as well as the genetic disposition. Traditionally, accumulating adversity over lifetime is considered to predict increased anxiety like behavior ("allostatic load"). The alternative "mismatch hypothesis" suggests increased levels of anxiety if the early environment differs from the later-life environment. Thus, there is a need for a whole-life history approach to gain a deeper understanding of how behavioral profiles are shaped. The aim of this study was to elucidate the effects of life history on the behavioral profile of mice varying in serotonin transporter (5-HIT) genotype, an established mouse model of increased anxiety-like behavior. For this purpose, mice grew up under either adverse or beneficial conditions during early phases of life. In adulthood, they were further subdivided so as to face a situation that either matched or mismatched the condition experienced so far, resulting in four different life histories. Subsequently, mice were tested for their anxiety-like and exploratory behavior. The main results were: (1) Life history profoundly modulated the behavioral profile. Surprisingly, mice that experienced early beneficial and later escapable adverse conditions showed less anxiety-like and more exploratory behavior compared to mice of other life histories. (2) Genotype significantly influenced the behavioral profile, with homozygous 5-HTT knockout mice displaying highest levels of anxiety-like and lowest levels of exploratory behavior. Our findings concerning life history indicate that the absence of adversity does not necessarily cause lower levels of anxiety than accumulating adversity. Rather, some adversity may be beneficial, particularly when following positive events. Altogether, we conclude that for an understanding of behavioral profiles, it is not sufficient to look at experiences during single phases of life, but the whole life history has to be considered.}, language = {en} }